Transition to chaos in magnetized rotating Rayleigh-Bénard convection

被引:0
|
作者
Oliveira, Dalton N. [1 ]
Chertovskih, Roman [2 ]
Rempel, Erico L. [1 ]
Franco, Francis F. [3 ]
机构
[1] Aeronaut Inst Technol ITA, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Univ Porto, Fac Engn, Res Ctr Syst & Technol SYSTEC, ARISE, Rua Dr Roberto Frias s-n, P-4200465 Porto, Portugal
[3] Fed Univ Jatai UFJ, BR-75801615 Jatai, GO, Brazil
关键词
chaos; Rayleigh-B & eacute; nard convection; blowout bifurcation; MHD dynamo; FIELD GENERATION; THERMAL-CONVECTION; BLOWOUT BIFURCATIONS; DYNAMO ACTION; PLANE LAYER; FLOWS; INTERMITTENCY; DEPENDENCE; SOLAR;
D O I
10.1088/1402-4896/ad741e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Transition to chaos and magnetic field generation are investigated in numerical simulations of three-dimensional rotating Rayleigh-B & eacute;nard convection. The behavior of the system is explored as a function of the rotation speed, measured by the Taylor number, the thermal buoyancy strength, measured by the Rayleigh number, and the magnetic Prandtl number. In the absence of magnetic field, a detailed exploration of the space of parameters reveals a sequence of Hopf bifurcations leading to quasiperiodicity and chaos. It is shown that rotation can dampen convection for low values of the Rayleigh number, but if buoyancy is strong enough to keep the convection, then rotation facilitates transition to chaos. In the presence of a weak seed magnetic field, convective motions may trigger a nonlinear dynamo that converts kinetic energy into magnetic energy, leading to an exponential increase of the magnetic energy. A nonhysteretic blowout bifurcation is shown to be responsible for the onset of the dynamo regime for a critical magnetic Prandtl number, whose value depends on the rotation rate.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Heteroclinic behavior in rotating Rayleigh-Bénard convection
    A. Demircan
    S. Scheel
    N. Seehafer
    The European Physical Journal B - Condensed Matter and Complex Systems, 2000, 13 : 765 - 775
  • [2] Melting driven by rotating Rayleigh-Bénard convection
    Ravichandran, S.
    Wettlaufer, J.S.
    Journal of Fluid Mechanics, 2021, 916
  • [3] Rotating Rayleigh-B?nard convection: Bits and pieces
    Ecke, Robert E.
    PHYSICA D-NONLINEAR PHENOMENA, 2023, 444
  • [4] On possible scenarios of the transition to turbulence in Rayleigh-Bénard convection
    N. M. Evstigneev
    N. A. Magnitskii
    Doklady Mathematics, 2010, 82 : 659 - 662
  • [5] Regimes in rotating Rayleigh-Bénard convection over rough boundaries
    Tripathi, Vinay Kumar
    Joshi, Pranav
    JOURNAL OF FLUID MECHANICS, 2024, 982
  • [6] Optimal heat transport in rotating Rayleigh-Bénard convection at large Rayleigh numbers
    Hartmann, Robert
    Yerragolam, Guru S.
    Verzicco, Roberto
    Lohse, Detlef
    Stevens, Richard J. A. M.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (08)
  • [7] Bursting dynamics in Rayleigh-Bénard convection
    Surajit Dan
    Manojit Ghosh
    Yada Nandukumar
    Syamal K. Dana
    Pinaki Pal
    The European Physical Journal Special Topics, 2017, 226 : 2089 - 2099
  • [8] Turbulent superstructures in Rayleigh-Bénard convection
    Ambrish Pandey
    Janet D. Scheel
    Jörg Schumacher
    Nature Communications, 9
  • [9] Non-Hermitian Chern number in rotating Rayleigh-Bénard convection
    Zhang, Furu
    Xie, Jin-Han
    Journal of Fluid Mechanics, 2024, 999
  • [10] New perspectives in turbulent Rayleigh-Bénard convection
    F. Chillà
    J. Schumacher
    The European Physical Journal E, 2012, 35