AI for AI-based intrusion detection as a service: Reinforcement learning to configure models, tasks, and capacities

被引:0
|
作者
Lin, Ying-Dar [1 ]
Huang, Hao-Xuan [1 ]
Sudyana, Didik [1 ]
Lai, Yuan-Cheng [2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Comp Sci, Hsinchu 300, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Informat Management, Taipei 106, Taiwan
关键词
ML-based IDaS; Auto-IDaS; Dynamic model selection; Capacity allocation optimization; Auto-configuration; RESOURCE-MANAGEMENT; CLOUD; ASSIGNMENT; EDGE;
D O I
10.1016/j.jnca.2024.103936
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusion Detection Systems (IDS) increasingly leverage machine learning (ML) to enhance the detection of zero-day attacks. As operational complexities increase, enterprises are turning to Intrusion Detection as a Service (IDaS), requiring advanced solutions for efficient ML model selection and resource allocation. Existing research often focuses primarily on accuracy and computational efficiency, leaving a gap in solutions that can dynamically adapt. This study introduces a novel integrated solution, Auto-IDaS, which employs advanced Reinforcement Learning (RL) techniques for real-time, adaptive management of IDS. Auto-IDaS uses the Deep Q-Network (DQN) algorithm for dynamic ML model selection, automatically adjusting configurations of IDaS in response to fluctuating network traffic conditions. Simultaneously, it utilizes the Twin Delayed Deep Deterministic (TD3) algorithm for optimizing capacity allocation, aiming to minimize computational costs while maintaining service quality. This dual approach is innovative in its use of RL to address both selection and allocation challenges within IDaS frameworks. The effectiveness of TD3 is compared against Simulated Annealing (SA), a traditional optimization technique. The results demonstrate that utilizing DQN to dynamically select the model significantly improves the reward by 0.29% to 27.04%, effectively balancing detection performance (F1 score), detection time, and computation cost. Regarding capacity allocation, TD3 accelerates decision times approximately 5 x 10 6 times faster than SA while retaining decision quality within a 10% range comparable to SA's performance.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] AI-Based Intrusion Detection System for Secure AI BOX Applications
    Chen, Jiann-Liang
    Chen, Zheng-Zhun
    Chang, Youg-Sheng
    Li, Ching-Iang
    Kao, Tien-I
    Lin, Yu-Ting
    Xiao, Yu-Yi
    Qiu, Jian-Fu
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 360 - 364
  • [2] Detection of Adversarial Attacks in AI-Based Intrusion Detection Systems Using Explainable AI
    Tcydenova, Erzhena
    Kim, Tae Woo
    Lee, Changhoon
    Park, Jong Hyuk
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2021, 11
  • [3] Detection of Adversarial Attacks in AI-Based Intrusion Detection Systems Using Explainable AI
    Tcydenova, Erzhena
    Kim, Tae Woo
    Lee, Changhoon
    Park, Jong Hyuk
    Human-centric Computing and Information Sciences, 2021, 11
  • [4] AI-based Intrusion Detection for Intelligence Internet of Vehicles
    Man, Dapeng
    Zeng, Fanyi
    Lv, Jiguang
    Xuan, Shichang
    Yang, Wu
    Guizani, Mohsen
    IEEE CONSUMER ELECTRONICS MAGAZINE, 2023, 12 (01) : 109 - 116
  • [5] Explainable AI-based Intrusion Detection in the Internet of Things
    Siganos, Marios
    Radoglou-Grammatikis, Panagiotis
    Kotsiuba, Igor
    Markakis, Evangelos
    Moscholios, Ioannis
    Goudos, Sotirios
    Sarigiannidis, Panagiotis
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [6] AI-Based Intrusion Detection for a Secure Internet of Things (IoT)
    Aljohani, Reham
    Bushnag, Anas
    Alessa, Ali
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2024, 32 (03)
  • [7] A Study of AI-based In-Vehicle Intrusion Detection Systems
    Gherbi, Elies
    Khemissa, Hamza
    Bouchouia, Mohammed Lamine
    Ayrault, Maxime
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 1036 - 1037
  • [8] A Comparative Study of AI-Based Intrusion Detection Techniques in Critical Infrastructures
    Otoum, Safa
    Kantarci, Burak
    Mouftah, Hussein
    ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2021, 21 (04)
  • [9] AI-Based Intrusion Detection Systems for In-Vehicle Networks: A Survey
    Rajapaksha, Sampath
    Kalutarage, Harsha
    Al-Kadri, M. Omar
    Petrovski, Andrei
    Madzudzo, Garikayi
    Cheah, Madeline
    ACM COMPUTING SURVEYS, 2023, 55 (11)
  • [10] Explainable AI-based innovative hybrid ensemble model for intrusion detection
    Ahmed, Usman
    Zheng, Jiangbin
    Almogren, Ahmad
    Khan, Sheharyar
    Sadiq, Muhammad Tariq
    Altameem, Ayman
    Rehman, Ateeq Ur
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2024, 13 (01):