Characterization and application of photocrosslinkable collagen maleate as bioink in extrusion-based 3D bioprinting

被引:0
|
作者
Chen, Po-Hsun [1 ]
Chen, I-Hsiang [1 ]
Kao, Wei-Hsiang [1 ]
Wu, Song-Yi [1 ,2 ,3 ,4 ]
Tsai, Wei-Bor [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Chem Engn, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan
[2] Natl Taiwan Univ, Sch Engn, Program Green Mat & Precis Devices, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan
[3] Guangdong Victory Biotech Co Ltd, 4F,A11,Guangdong New Light Source Ind Pk, Foshan 528226, Peoples R China
[4] Guangxi Shenguan Collagen Biol Grp Co Ltd, 39 Xijiang 4th Rd, Wuzhou, Peoples R China
关键词
PEPSIN-SOLUBILIZED COLLAGEN; CROSS-LINKING; TISSUE; HYDROGELS; CELLS;
D O I
10.1039/d4bm00826j
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
3D bioprinting, a significant advancement in biofabrication, is renowned for its precision in creating tissue constructs. Collagen, despite being a gold standard biomaterial, faces challenges in bioink formulations due to its unique physicochemical properties. This study introduces a novel, neutral-soluble, photocrosslinkable collagen maleate (ColME) that is ideal for 3D bioprinting. ColME was synthesized by chemically modifying bovine type I collagen with maleic anhydride, achieving a high substitution ratio that shifted the isoelectric point to enhance solubility in physiological pH environments. This modification was confirmed to preserve the collagen's triple-helix structure substantially. Bioprinting parameters for ColME were optimized, focusing on adjustments to the bioink concentration, extrusion pressure, nozzle speed, and temperature. Results demonstrated that lower temperatures and smaller nozzle sizes substantially improved the print quality of grid structures. Additionally, the application of intermittent photo-crosslinking facilitated the development of structurally robust 3D multilayered constructs, enabling the stable fabrication of complex tissues. Cell viability assays showed that encapsulated cells within the ColME matrix maintained high viability after printing. When compared to methacrylated gelatin, ColME exhibited superior mechanical strength, resistance to enzymatic digestion, and overall printability, positioning it as an outstanding bioink for the creation of durable, bioactive 3D tissues. Bovine type I collagen was chemically modified with maleic anhydride to introduce a novel neutral-soluble and photocrosslinkable bioink.
引用
收藏
页码:5063 / 5075
页数:13
相关论文
共 50 条
  • [1] Bioink design for extrusion-based bioprinting
    Zhang, Tao
    Zhao, Wei
    Xiahou, Zijie
    Wang, Xingwang
    Zhang, Kunxi
    Yin, Jingbo
    APPLIED MATERIALS TODAY, 2021, 25
  • [2] Biocompatibility evaluation of antioxidant cocktail loaded gelatin methacrylamide as bioink for extrusion-based 3D bioprinting
    Sekar, J. Anupama
    Velayudhan, Shiny
    Kumar, P. R. Anil
    BIOMEDICAL MATERIALS, 2023, 18 (04)
  • [3] Extrusion-Based 3D Printing of Photocrosslinkable Chitosan Inks
    Garcia-Garcia, Ane
    Perez-Alvarez, Leyre
    Ruiz-Rubio, Leire
    Larrea-Sebal, Asier
    Martin, Cesar
    Vilas-Vilela, Jose Luis
    GELS, 2024, 10 (02)
  • [4] Hyaluronic acid as a bioink for extrusion-based 3D printing
    Petta, D.
    D'Amora, U.
    Ambrosio, L.
    Grijpma, D. W.
    Eglin, D.
    D'Este, M.
    BIOFABRICATION, 2020, 12 (03)
  • [5] Direct process feedback in extrusion-based 3D bioprinting
    Armstrong, Ashley A.
    Norato, Julian
    Alleyne, Andrew G.
    Johnson, Amy J. Wagoner
    BIOFABRICATION, 2020, 12 (01)
  • [7] Stabilization strategies in extrusion-based 3D bioprinting for tissue engineering
    Shapira, Assaf
    Noor, Nadav
    Asulin, Masha
    Dvir, Tal
    APPLIED PHYSICS REVIEWS, 2018, 5 (04):
  • [8] Extrusion-based bioprinting: considerations toward gelatin-alginate bioink
    Abedi, Kimia
    Keshvari, Hamid
    Solati-Hashjin, Mehran
    RAPID PROTOTYPING JOURNAL, 2024, 30 (06) : 1094 - 1104
  • [9] Thermally-controlled extrusion-based bioprinting of collagen
    Kazim K. Moncal
    Veli Ozbolat
    Pallab Datta
    Dong N. Heo
    Ibrahim T. Ozbolat
    Journal of Materials Science: Materials in Medicine, 2019, 30
  • [10] Thermally-controlled extrusion-based bioprinting of collagen
    Moncal, Kazim K.
    Ozbolat, Veli
    Datta, Pallab
    Heo, Dong N.
    Ozbolat, Ibrahim T.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2019, 30 (05)