Superconvergence analysis of the conforming discontinuous Galerkin method on a Bakhvalov-type mesh for singularly perturbed reaction-diffusion equation
被引:0
|
作者:
Yan, Changliang
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Yan, Changliang
[1
]
Liu, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Liu, Xiaowei
[1
]
Ma, Xiaoqi
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Ma, Xiaoqi
[2
]
Liu, Shasha
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Liu, Shasha
[1
]
机构:
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
[2] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
The conforming discontinuous Galerkin (CDG) method maximizes the utilization of all degrees of freedom of the discontinuous Pk k polynomial to achieve a convergence rate two orders higher than its counterpart conforming finite element method employing continuous Pk k element. Despite this superiority, there is little theory of the CDG methods for singular perturbation problems. In this paper, superconvergence of the CDG method is studied on a Bakhvalov-type mesh for a singularly perturbed reaction-diffusion problem. For this goal, a pre-existing least squares method has been utilized to ensure better approximation properties of the projection. On the basis of that, we derive superconvergence results for the CDG finite element solution in the energy norm and L 2-norm and obtain uniform convergence of the CDG method for the first time.
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
Zhang, Jin
Liu, Xiaowei
论文数: 0引用数: 0
h-index: 0
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Liu, Xiaowei
Zhang, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
机构:
Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
Zhang, Chunxiao
Zhang, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
Zhang, Jin
Zheng, Wenchao
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math Sci, Jinan 250014, Shandong, Peoples R China
机构:
Qilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan 250353, Peoples R ChinaQilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan 250353, Peoples R China
Liu, Xiaowei
Zhang, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaQilu Univ Technol, Sch Math & Stat, Shandong Acad Sci, Jinan 250353, Peoples R China