An Effective Hierarchical Graph Attention Network Modeling Approach for Pronunciation Assessment

被引:0
|
作者
Yan, Bi-Cheng [1 ]
Chen, Berlin [1 ]
机构
[1] Natl Taiwan Normal Univ, Dept Comp Sci & Informat Engn, Taipei 11677, Taiwan
关键词
Linguistics; Stress; Accuracy; Training; Feature extraction; Task analysis; Predictive models; Automatic pronunciation assessment (APA); computer-assisted pronunciation training; deep regression models; pre-training mechanism; MULTI-GRANULARITY; SPEECH RECOGNITION; PITCH;
D O I
10.1109/TASLP.2024.3449111
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Automatic pronunciation assessment (APA) manages to quantify second language (L2) learners' pronunciation proficiency in a target language by providing fine-grained feedback with multiple aspect scores (e.g., accuracy, fluency, and completeness) at various linguistic levels (i.e., phone, word, and utterance). Most of the existing efforts commonly follow a parallel modeling framework, which takes a sequence of phone-level pronunciation feature embeddings of a learner's utterance as input and then predicts multiple aspect scores across various linguistic levels. However, these approaches neither take the hierarchy of linguistic units into account nor consider the relatedness among the pronunciation aspects in an explicit manner. In light of this, we put forward an effective modeling approach for APA, termed HierGAT, which is grounded on a hierarchical graph attention network. Our approach facilitates hierarchical modeling of the input utterance as a heterogeneous graph that contains linguistic nodes at various levels of granularity. On top of the tactfully designed hierarchical graph message passing mechanism, intricate interdependencies within and across different linguistic levels are encapsulated and the language hierarchy of an utterance is factored in as well. Furthermore, we also design a novel aspect attention module to encode relatedness among aspects. To our knowledge, we are the first to introduce multiple types of linguistic nodes into graph-based neural networks for APA and perform a comprehensive qualitative analysis to investigate their merits. A series of experiments conducted on the speechocean762 benchmark dataset suggests the feasibility and effectiveness of our approach in relation to several competitive baselines.
引用
收藏
页码:3974 / 3985
页数:12
相关论文
共 50 条
  • [1] Recipe Recommendation With Hierarchical Graph Attention Network
    Tian, Yijun
    Zhang, Chuxu
    Metoyer, Ronald
    Chawla, Nitesh V.
    FRONTIERS IN BIG DATA, 2022, 4
  • [2] Hierarchical graph attention network for temporal knowledge graph reasoning
    Shao, Pengpeng
    He, Jiayi
    Li, Guanjun
    Zhang, Dawei
    Tao, Jianhua
    NEUROCOMPUTING, 2023, 550
  • [3] Hyperbolic hierarchical graph attention network for knowledge graph completion
    许浩
    CHEN Shudong
    QI Donglin
    TONG Da
    YU Yong
    CHEN Shuai
    High Technology Letters, 2024, 30 (03) : 271 - 279
  • [4] Hyperbolic hierarchical graph attention network for knowledge graph completion
    Xu, Hao
    Chen, Shudong
    Qi, Donglin
    Tong, Da
    Yu, Yong
    Chen, Shuai
    High Technology Letters, 2024, 30 (03) : 271 - 279
  • [5] Hierarchical Perceptual Graph Attention Network for Knowledge Graph Completion
    Han, Wenhao
    Liu, Xuemei
    Zhang, Jianhao
    Li, Hairui
    ELECTRONICS, 2024, 13 (04)
  • [6] Graph Attention Topic Modeling Network
    Yang, Liang
    Wu, Fan
    Gu, Junhua
    Wang, Chuan
    Cao, Xiaochun
    Jin, Di
    Guo, Yuanfang
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 144 - 154
  • [7] Relational Graph Neural Network with Hierarchical Attention for Knowledge Graph Completion
    Zhang, Zhao
    Zhuang, Fuzhen
    Zhu, Hengshu
    Shi, Zhiping
    Xiong, Hui
    He, Qing
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9612 - 9619
  • [8] Hierarchical Fuzzy Graph Attention Network for Group Recommendation
    Liang, Ruxia
    Zhang, Qian
    Wang, Jianqiang
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [9] Temporal Hierarchical Graph Attention Network for Traffic Prediction
    Huang, Ling
    Liu, Xing-Xing
    Huang, Shu-Qiang
    Wang, Chang-Dong
    Tu, Wei
    Xie, Jia-Meng
    Tang, Shuai
    Xie, Wendi
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2021, 12 (06)
  • [10] Disentangled Hierarchical Attention Graph Neural Network for Recommendation
    He, Weijie
    Ouyang, Yuanxin
    Peng, Keqin
    Rong, Wenge
    Xiong, Zhang
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT I, ICIC 2024, 2024, 14875 : 415 - 426