Background: Time-to-event (TTE) endpoints are evaluated as the primary endpoint in single-arm clinical trials; however, limited options are available in statistical software for sample size calculation. In single-arm trials with TTE endpoints, the non-parametric log-rank test is commonly used. Parametric options for single-arm design assume survival times follow exponential distribution or Weibull distribution. Methods: The exponential- or Weibull-distributed survival time assumption does not always reflect hazard pattern of real-life diseases. We therefore propose gamma distribution as an alternative parametric option for designing single-arm studies with TTE endpoints. We outline a sample size calculation approach using gamma distribution with a known shape parameter and explain how to extract the gamma shape estimate from previously published resources. In addition, we conduct simulations to assess the accuracy of the extracted gamma shape parameter and to explore the impact on sample size calculation when survival time distribution is misspecified. Results: Our simulations show that if a previously published study (sample sizes >= 60 and censoring proportions <= 20 %) reported median and inter-quartile range of survival time, we can obtain a reasonably accurate gamma shape estimate, and use it to design new studies. When true survival time is Weibull-distributed, sample size calculation could be underestimated or overestimated depending on the hazard shape. Conclusions: We show how to use gamma distribution in designing a single-arm trial, thereby offering more options beyond the exponential and Weibull. We provide a simulation-based assessment to ensure an accurate estimation of the gamma shape and recommend caution to avoid misspecification of the underlying distribution.
机构:
Merck & Co Inc, Biostat & Res Decis Sci, North Wales, PA USA
Merck & Co Inc, Biostat & Res Decis Sci, North Wales, PA 19454 USAMerck & Co Inc, Biostat & Res Decis Sci, North Wales, PA USA
Waleed, Muhammad
He, Jianghua
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas Med Ctr, Dept Biostat & Data Sci, Kansas City, KS USAMerck & Co Inc, Biostat & Res Decis Sci, North Wales, PA USA
He, Jianghua
Phadnis, Milind A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas Med Ctr, Dept Biostat & Data Sci, Kansas City, KS USAMerck & Co Inc, Biostat & Res Decis Sci, North Wales, PA USA
机构:
UCL, Comprehens Clin Trials Unit, 90 High Holborn 2nd Floor, London WC1V 6LJ, EnglandUCL, Comprehens Clin Trials Unit, 90 High Holborn 2nd Floor, London WC1V 6LJ, England
Dehbi, Hakim-Moulay
Embleton-Thirsk, Andrew
论文数: 0引用数: 0
h-index: 0
机构:
UCL, Comprehens Clin Trials Unit, 90 High Holborn 2nd Floor, London WC1V 6LJ, EnglandUCL, Comprehens Clin Trials Unit, 90 High Holborn 2nd Floor, London WC1V 6LJ, England
Embleton-Thirsk, Andrew
McCaw, Zachary Ryan
论文数: 0引用数: 0
h-index: 0
机构:
Insitro, South San Francisco, CA USAUCL, Comprehens Clin Trials Unit, 90 High Holborn 2nd Floor, London WC1V 6LJ, England
机构:
Tokyo Univ Sci, Dept Informat & Comp Technol, Grad Sch Engn, Tokyo, Japan
Natl Canc Ctr, Ctr Res Adm & Support, Biostat Div, Tokyo, JapanTokyo Univ Sci, Dept Informat & Comp Technol, Grad Sch Engn, Tokyo, Japan
Machida, Ryunosuke
Fujii, Yosuke
论文数: 0引用数: 0
h-index: 0
机构:
Pfizer R&D Japan GK, Biometr & Data Management, Tokyo, JapanTokyo Univ Sci, Dept Informat & Comp Technol, Grad Sch Engn, Tokyo, Japan
Fujii, Yosuke
Sozu, Takashi
论文数: 0引用数: 0
h-index: 0
机构:
Tokyo Univ Sci, Fac Engn, Dept Informat & Comp Technol, Tokyo, JapanTokyo Univ Sci, Dept Informat & Comp Technol, Grad Sch Engn, Tokyo, Japan