Experimental Study on Parameters Optimization of Selective Laser Melting 316L Stainless Steel Based on the Response Surface Methodology

被引:0
|
作者
Wang, Yali [1 ]
Li, Zhiyong [1 ]
Cui, Jingran [1 ]
Zhang, Wei [1 ]
Liu, Yuchen [1 ]
机构
[1] Shandong Univ Technol, Sch Mech Engn, Zibo 255049, Shandong, Peoples R China
关键词
response surface methodology; selective laser melting; 316L stainless steel; surface roughness; materials processing;
D O I
10.1115/1.4065426
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The use of 3D printing technology can prepare flexible and varied special-shaped complex structures while realizing resource-saving and cost reduction. For this purpose, a 316L stainless steel sample was formed by selective laser melting technology, and the quality of samples was optimized by the Box-Behnken surface response method. Taking the surface roughness Sa as the response value, a regression analysis of four parameters of selective laser melting (laser power, scanning speed, scanning spacing, and scanning strategy) was designed using design expert software. The results showed that the scanning spacing and scanning speed have the greatest influence on the surface roughness, while the laser power and scanning strategy have no significant influence on the surface roughness. Meanwhile, the established surface roughness response surface model is effective and can be used for quality optimization of 316L structural trim. When the laser power was 185 W, the scanning speed was 615 mm/s, the scanning spacing was 110 mu m and concentric scanning strategy was adopted, the surface adhesion powder was less, and the minimum surface roughness Sa was 9.001 mu m.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Study on selective laser melting 316L stainless steel parts with superhydrophobic surface
    Sun, Jianfeng
    Wang, Weiqiang
    Liu, Zhu
    Li, Bo
    Xing, Kaifeng
    Yang, Zhou
    APPLIED SURFACE SCIENCE, 2020, 533 (533)
  • [2] Collaborative Optimization of Density and Surface Roughness of 316L Stainless Steel in Selective Laser Melting
    Deng, Yong
    Mao, Zhongfa
    Yang, Nan
    Niu, Xiaodong
    Lu, Xiangdong
    MATERIALS, 2020, 13 (07)
  • [3] Influence of laser processing parameters on the surface characteristics of 316L stainless steel manufactured by selective laser melting
    Dursun, Gokhan
    Ibekwe, Samuel
    Li, Guoqiang
    Mensah, Patrick
    Joshi, Ghanashyam
    Jerro, Dwayne
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 387 - 393
  • [4] OPTIMIZATION OF LASER BUTT WELDING OF STAINLESS STEEL 316L USING RESPONSE SURFACE METHODOLOGY
    Chioibasu, Diana
    Calin, Bogdan
    Popescu, Andrei
    Puscas, Niculae
    Klobcar, Damjan
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2020, 82 (02): : 221 - 230
  • [5] Optimization of laser butt welding of stainless steel 316l using response surface methodology
    Chioibaşu, Diana
    Călin, Bogdan
    Popescu, Andrei
    Puşcaş, Niculae
    Klobčar, Damjan
    1600, Politechnica University of Bucharest (82): : 221 - 230
  • [6] Effect of Process Parameters on Defect in Selective Laser Melting of 316L Stainless Steel
    Wang Lei
    Guo Kai
    Cong Jiaqi
    Bai Huiyi
    Kang Xueliang
    Ji Yunping
    Li Yiming
    Ren Huiping
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (05)
  • [7] Optimization of Selective Laser Melting (SLM) Additive Manufacturing Process Parameters of 316L Austenitic Stainless Steel
    Dutt, Aniket K.
    Bansal, G. K.
    Tripathy, S.
    Krishna, K. Gopala
    Srivastava, V. C.
    Chowdhury, S. Ghosh
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (02) : 335 - 345
  • [8] Optimization of Selective Laser Melting (SLM) Additive Manufacturing Process Parameters of 316L Austenitic Stainless Steel
    Aniket K. Dutt
    G. K. Bansal
    S. Tripathy
    K. Gopala Krishna
    V. C. Srivastava
    S. Ghosh Chowdhury
    Transactions of the Indian Institute of Metals, 2023, 76 : 335 - 345
  • [9] Additive Manufacturing of 316L stainless steel by Selective Laser Melting
    Moreira Montuori, Riccardo Augusto
    Figueira, Gustavo
    Cataldi, Thiago Pacagnan
    de Alcantara, Nelson Guedes
    Bolfarini, Claudemiro
    Coelho, Reginaldo Teixeira
    Gargarella, Piter
    SOLDAGEM & INSPECAO, 2020, 25 (25): : 1 - 15
  • [10] Fiber laser selective melting of 316L stainless steel powder
    Wang D.
    Yang Y.
    He X.
    Wu W.
    Su X.
    Wang H.
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2010, 22 (08): : 1881 - 1886