MOMENTS OF AVERAGES OF RAMANUJAN SUMS OVERNUMBER FIELDS

被引:1
|
作者
Chaubey, Sneha [1 ]
Goel, Shivani [1 ]
机构
[1] IIIT Delhi, Dept Math, New Delhi 110020, India
关键词
Ramanujan sums; number fields; Dedekind zeta function; Lindelof hypothesis;
D O I
10.7169/facm/2136
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming the generalized Lindel & ouml;f hypothesis, we provide asymptotic formulas forthe mean values of the first and second moments of Ramanujan sums over any number field. Additionally, unconditionally, we estimate the second moment of Ramanujan sums over cyclotomicnumber fields
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Moments of averages of generalized Ramanujan sums
    Nicolas Robles
    Arindam Roy
    Monatshefte für Mathematik, 2017, 182 : 433 - 461
  • [2] Moments of averages of generalized Ramanujan sums
    Robles, Nicolas
    Roy, Arindam
    MONATSHEFTE FUR MATHEMATIK, 2017, 182 (02): : 433 - 461
  • [3] On Sums of Averages of Generalized Ramanujan Sums
    Kiuchi, Isao
    TOKYO JOURNAL OF MATHEMATICS, 2017, 40 (01) : 255 - 275
  • [4] Sums of averages of generalized Ramanujan sums
    Kiuchi, Isao
    JOURNAL OF NUMBER THEORY, 2017, 180 : 310 - 348
  • [5] Distribution of averages of Ramanujan sums
    Emre Alkan
    The Ramanujan Journal, 2012, 29 : 385 - 408
  • [6] Distribution of averages of Ramanujan sums
    Alkan, Emre
    RAMANUJAN JOURNAL, 2012, 29 (1-3): : 385 - 408
  • [7] Certain weighted averages of generalized Ramanujan sums
    Namboothiri, K. Vishnu
    RAMANUJAN JOURNAL, 2017, 44 (03): : 531 - 547
  • [8] Certain weighted averages of generalized Ramanujan sums
    K. Vishnu Namboothiri
    The Ramanujan Journal, 2017, 44 : 531 - 547
  • [9] Averages of Ramanujan sums: note on two papers by E. Alkan
    Toth, Laszlo
    RAMANUJAN JOURNAL, 2014, 35 (01): : 149 - 156
  • [10] Averages of Ramanujan sums: note on two papers by E. Alkan
    László Tóth
    The Ramanujan Journal, 2014, 35 : 149 - 156