Fuzzy α-Cut Lasso for Handling Diverse Data Types in LR-Fuzzy Outcomes

被引:0
|
作者
Kim, Hyoshin [1 ]
Jung, Hye-Young [2 ]
机构
[1] North Carolina State Univ, Dept Stat, Campus Box 8203, Raleigh, NC 27695 USA
[2] Hanyang Univ ERICA, Dept Math Data Sci, 55 Hanyangdaehak Ro, Ansan 15588, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Lasso; Fuzzy outcome; Fuzzy coefficient; LR-fuzzy number; Multiple measures; REGRESSION-MODEL; SELECTION;
D O I
10.1007/s40815-024-01825-w
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regularization techniques have been widely applied in the context of fuzzy regression models, primarily tailored to triangular fuzzy outcomes. While this approach effectively handles fuzzy data in explicit interval data formats, its adaptability to various data types commonly encountered in practical applications is limited. To address this gap, we introduce the new fuzzy alpha-cut Lasso, extending the classical Lasso to encompass two essential data formats for fuzzy outcomes: explicit interval data formats and implicit formats with multiple measurements. Leveraging alpha-cuts, this model can extract richer insights from the data regarding the shape of fuzzy numbers. The model shows flexibility in handling fuzzy outputs and fuzzy regression coefficients of the LR-type, encompassing specific examples such as triangular and Gaussian types.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The design of a CUSUM control chart for LR-fuzzy data
    Wang, Dabuxilatu
    Hryniewicz, Olgierd
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 175 - 180
  • [2] Risk-adjusted control charts based on LR-fuzzy data
    Rezaeifar, A.
    Gildeh, B. Sadeghpour
    Borzadaran, G. R. Mohtashami
    [J]. IRANIAN JOURNAL OF FUZZY SYSTEMS, 2020, 17 (05): : 69 - 80
  • [3] Ranking function of two LR-fuzzy numbers
    Firozja, M. Adabitabar
    Agheli, B.
    Hosseinzadeh, M.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2014, 26 (03) : 1137 - 1142
  • [4] The generalized LR-fuzzy numbers and its application in fully fuzzy linear systems
    Gong, Zeng-tai
    Liu, Kun
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (01) : 133 - 141
  • [5] A T-sum bound of LR-fuzzy numbers
    Hong, DH
    Hwang, C
    [J]. FUZZY SETS AND SYSTEMS, 1997, 91 (02) : 239 - 252
  • [6] The solution of linear programming with LR-fuzzy numbers in objective function
    Cai, Qianfeng
    Hao, Zhifeng
    Pan, Shaohua
    [J]. FUZZY INFORMATION AND ENGINEERING, PROCEEDINGS, 2007, 40 : 988 - +
  • [7] A New Pairwise Comparison Based Method of Ranking LR-fuzzy Numbers
    Zhang, Mingxin
    Yu, Fusheng
    [J]. ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, AICI 2010, PT II, 2010, 6320 : 160 - 167
  • [8] An explainable fused lasso regression model for handling high-dimensional fuzzy data
    Hesamian, Gholamreza
    Johannssen, Arne
    Chukhrova, Nataliya
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 441
  • [9] Modeling Fuzzy Data with Fuzzy Data Types in Fuzzy Database and XML Models
    Yan, Li
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2013, 10 (06) : 610 - 615
  • [10] Fuzzy types: a framework for handling uncertainty about types of objects
    Cao, TH
    Creasy, PN
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2000, 25 (03) : 217 - 253