Electroreduction of CO2 to methane with triazole molecular catalysts

被引:5
|
作者
Xu, Zhanyou [1 ]
Lu, Ruihu [2 ]
Lin, Zih-Yi [3 ,4 ]
Wu, Weixing [1 ]
Tsai, Hsin-Jung [3 ,4 ]
Lu, Qian [1 ]
Li, Yuguang C. [5 ]
Hung, Sung-Fu [3 ,4 ]
Song, Chunshan [1 ]
Yu, Jimmy C. [1 ]
Wang, Ziyun [2 ]
Wang, Ying [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Chem, Hong Kong, Peoples R China
[2] Univ Auckland, Sch Chem Sci, Auckland, New Zealand
[3] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu, Taiwan
[5] SUNY Buffalo, Dept Chem, Buffalo, NY USA
来源
NATURE ENERGY | 2024年 / 9卷 / 11期
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COPPER; ELECTRODE; CONVERSION; PRODUCTS; SURFACES;
D O I
10.1038/s41560-024-01645-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electrochemical CO2 reduction reaction towards value-added fuel and feedstocks often relies on metal-based catalysts. Organic molecular catalysts, which are more acutely tunable than metal catalysts, are still unable to catalyse CO2 to hydrocarbons under industrially relevant current densities for long-term operation, and the catalytic mechanism is still elusive. Here we report 3,5-diamino-1,2,4-triazole-based membrane electrode assemblies for CO2-to-CH4 conversion with Faradaic efficiency of (52 +/- 4)% and turnover frequency of 23,060 h(-1) at 250 mA cm(-2). Our mechanistic studies suggest that the CO2 reduction at the 3,5-diamino-1,2,4-triazole electrode proceeds through the intermediary *CO2-*COOH-*C(OH)(2)-*COH to produce CH4 due to the spatially distributed active sites and the suitable energy level of the molecular orbitals. A pilot system operated under a total current of 10 A (current density = 123 mA cm(-2)) for 10 h is able to produce CH4 at a rate of 23.0 mmol h(-1).
引用
收藏
页码:1397 / 1406
页数:10
相关论文
共 50 条
  • [1] Supported molecular catalysts for the heterogeneous CO2 electroreduction
    Hu, Xin-Ming
    Pedersen, Steen U.
    Daasbjerg, Kim
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 15 : 148 - 154
  • [2] Molecular Engineering of Copper Phthalocyanine for CO2 Electroreduction to Methane
    Chen, Jin-Mei
    Xie, Wen-Jun
    Yang, Zhi-Wen
    He, Liang-Nian
    CHEMSUSCHEM, 2024, 17 (06)
  • [3] Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts
    Peterson, Andrew A.
    Norskov, Jens K.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (02): : 251 - 258
  • [4] Catalysts design for CO2 electroreduction
    Li Li
    Yongfu Sun
    Yi Xie
    Science China(Chemistry), 2022, (03) : 425 - 427
  • [5] Catalysts design for CO2 electroreduction
    Li Li
    Yongfu Sun
    Yi Xie
    Science China Chemistry, 2022, 65 : 425 - 427
  • [6] Catalysts design for CO2 electroreduction
    Li, Li
    Sun, Yongfu
    Xie, Yi
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (03) : 425 - 427
  • [7] Molecular enhancement of Cu-based catalysts for CO2 electroreduction
    Luo, Haiqiang
    Li, Bo
    Ma, Jian-Gong
    Cheng, Peng
    CHEMICAL COMMUNICATIONS, 2024, 60 (70) : 9298 - 9309
  • [8] Highly dispersed, single-site copper catalysts for the electroreduction of CO2 to methane
    Zhang, Teng
    Verma, Sumit
    Kim, Soojeong
    Fister, Tim T.
    Kenis, Paul J. A.
    Gewirth, Andrew A.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 875 (875)
  • [9] Customized CO2 electroreduction to methane or ethylene by manipulating *H and *CO adsorption on Cu/CeOx catalysts
    Yang, Tinghui
    Zhang, Yingbing
    Huang, Zichao
    Yang, Jianping
    Kuang, Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (31) : 20115 - 20120
  • [10] Immobilization strategies for porphyrin-based molecular catalysts for the electroreduction of CO2
    Abdinejad, Maryam
    Tang, Keith
    Dao, Caitlin
    Saedy, Saeed
    Burdyny, Tom
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (14) : 7626 - 7636