Flow Response of a Laminar Shock-Boundary Layer Interaction to Prescribed Surface Motions

被引:0
|
作者
Fields, James L. [1 ]
Barnes, Caleb J. [2 ]
McNamara, Jack J. [1 ]
Gaitonde, Datta V. [1 ]
机构
[1] Ohio State Univ, Dept Mech & Aerosp Engn, 201 W 19th Ave, Columbus, OH 43210 USA
[2] US Air Force, Aerosp Syst Directorate, Res Lab, 2210 Eighth St, Wright Patterson AFB, OH 45433 USA
关键词
Boundary Layer Interaction; Laminar Shock; Fluid Structure Interaction; Flow Control; Proper Orthogonal Decomposition; Flow Separation; separation control; Shear Layers; shock boundary layer interaction; sbli; OBLIQUE SHOCK; PANEL FLUTTER; LOADS; FORM; WAVE;
D O I
10.2514/1.J064183
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The response of an impinging laminar shock-boundary layer interaction (SBLI) to prescribed surface motions is investigated numerically at M infinity=2, Rea=120,000, and a shock-associated pressure ratio of 1.5. Parametric sweeps over classical standing and traveling mode shapes are considered at low-, moderate-, and high-frequency conditions for fluid-structure interaction. The specific values are chosen based on compliant panel deformations and frequencies reported in the literature. At low surface oscillation frequencies, the SBLI responds to the deformations in a quasi-steady fashion, with standing wave forcing displaying both breathing and sloshing of the separated region depending on structural mode shape. As the oscillation frequency is increased, the flow transitions to an unsteady response with pronounced separation bubble undulations in time. Higher-order modes and frequencies lead to the largest reductions in the time-mean separation bubble size, more so with traveling surface waves. Modal decompositions show that pressure fluctuations, which arise due to dynamic interaction with the surface, persist downstream and increase in amplitude with the surface oscillation frequency.
引用
收藏
页码:4153 / 4169
页数:17
相关论文
共 50 条
  • [1] SHOCK-BOUNDARY LAYER INTERACTION IN HYPERSONIC FLOW
    GAILLARD, L
    STORKMANN, V
    GRONIG, H
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE CHIMIE ASTRONOMIE, 1995, 321 (05): : 183 - 186
  • [2] Numerical simulation of laminar hypersonic shock-boundary layer interaction
    Domroese, U.
    Krause, E.
    Meinke, M.
    1996, Springer-Verlag GmbH & Company KG, Berlin, Germany (20):
  • [3] Thermal control of transonic shock-boundary layer interaction over a natural laminar flow airfoil
    Sengupta, Tapan K.
    Roy, Arkadyuti Ghosh
    Chakraborty, Ardhendu
    Sengupta, Aditi
    Sundaram, Prasannabalaji
    PHYSICS OF FLUIDS, 2021, 33 (12)
  • [4] New Shock Detector for Shock-Boundary Layer Interaction
    Liu, Chaoqun
    Oliveira, Maria
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 78 - 87
  • [5] Skin friction estimation on a surface under shock-boundary layer interaction
    Kshetrimayum, Maitri
    Irimpan, Kiran Joy
    Menezes, Viren
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2020, 45 (01):
  • [6] Skin friction estimation on a surface under shock-boundary layer interaction
    Maitri Kshetrimayum
    Kiran Joy Irimpan
    Viren Menezes
    Sādhanā, 2020, 45
  • [7] SHOCK OBLIQUITY EFFECT ON TRANSONIC SHOCK-BOUNDARY LAYER INTERACTION
    INGER, GR
    SOBIECZKY, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1978, 58 (07): : T333 - T335
  • [8] SHOCK-BOUNDARY LAYER INTERACTION AND ENERGETICS IN TRANSONIC FLUTTER
    Karnick, Pradeepa T.
    Venkatraman, Kartik
    JOURNAL OF FLUID MECHANICS, 2017, 832 : 212 - 240
  • [9] Aeroelastic response of a thin panel excited by a separated shock-boundary layer interaction
    Brouwer, Kirk R.
    Perez, Ricardo A.
    Beberniss, Timothy J.
    Spottswood, S. Michael
    PHYSICS OF FLUIDS, 2023, 35 (12)
  • [10] Visualization of incipient flow separation condition on hypersonic shock-boundary layer interaction
    Talsaniya, H. M.
    Menezes, V.
    Nithin, B.
    Kulkarni, V.
    JOURNAL OF VISUALIZATION, 2015, 18 (04) : 611 - 618