SMALNet: Segment Anything Model Aided Lightweight Network for Infrared Image Segmentation

被引:0
|
作者
Ding, Kun [1 ]
Xiang, Shiming [1 ]
Pan, Chunhong [2 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Multimodal Artificial Intelligence S, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Res Ctr Aerosp Informat, Beijing 100190, Peoples R China
关键词
Infrared image; Semantic segmentation; Lightweight design; Segment anything model;
D O I
10.1016/j.infrared.2024.105540
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Infrared based visual perception is important for night vision of autonomous vehicles, unmanned aerial vehicles (UAVs), etc. Semantic segmentation based on deep learning is one of the key techniques for infrared vision- based perception systems. Currently, most of the advanced methods are based on Transformers, which can achieve favorable segmentation accuracy. However, the high complexity of Transformers prevents them from meeting the real-time requirement of inference speed in resource constrained applications. In view of this, we suggest several lightweight designs that significantly reduce existing computational complexity. In order to maintain the segmentation accuracy, we further introduce the recent vision big model - Segment Anything Model (SAM) to supply auxiliary supervisory signals while training models. Based on these designs, we propose a lightweight segmentation network termed SMALNet (Segment Anything Model Aided Lightweight Network). Compared to existing state-of-the-art method, SegFormer, it reduces 64% FLOPs while maintaining the accuracy to a large extent on two commonly-used benchmarks. The proposed SMALNet can be used in various infrared based vision perception systems with limited hardware resources.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Application of Segment Anything Model in Medical Image Segmentation
    Wu, Tong
    Hu, Haoji
    Feng, Yang
    Luo, Qiong
    Xu, Dong
    Zheng, Weizeng
    Jin, Neng
    Yang, Chen
    Yao, Jincao
    Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51 (21):
  • [2] Image Radar Point Cloud Segmentation with Segment Anything Model
    Du, Yu
    Smith, Jeremy S.
    Man, Ka Lok
    Lim, Eng Gee
    2023 20TH INTERNATIONAL SOC DESIGN CONFERENCE, ISOCC, 2023, : 195 - 196
  • [3] Drilling rock image segmentation and analysis using segment anything model
    Shan, Liqun
    Liu, Yanchang
    Du, Ke
    Paul, Shovon
    Zhang, Xingli
    Hei, Xiali
    ADVANCES IN GEO-ENERGY RESEARCH, 2024, 12 (02): : 89 - 101
  • [4] Evaluation and Improvement of Segment Anything Model for Interactive Histopathology Image Segmentation
    Kim, SeungKyu
    Oh, Hyun-Jic
    Min, Seonghui
    Jeong, Won-Ki
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023 WORKSHOPS, 2023, 14393 : 245 - 255
  • [5] Enhancing Agricultural Image Segmentation with an Agricultural Segment Anything Model Adapter
    Li, Yaqin
    Wang, Dandan
    Yuan, Cao
    Li, Hao
    Hu, Jing
    SENSORS, 2023, 23 (18)
  • [6] PESAM: Privacy-Enhanced Segment Anything Model for Medical Image Segmentation
    Cai, Jiuyun
    Niu, Ke
    Pan, Yijie
    Tai, Wenjuan
    Han, Jiacheng
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT II, ICIC 2024, 2024, 14863 : 94 - 105
  • [7] Segment anything model for medical image segmentation: Current applications and future directions
    Zhang, Yichi
    Shen, Zhenrong
    Jiao, Rushi
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [8] MW-SAM:Mangrove wetland remote sensing image segmentation network based on segment anything model
    Zhang, Yu
    Wang, Xin
    Cai, Jingye
    Yang, Qun
    IET Image Processing, 2024, 18 (14) : 4503 - 4513
  • [9] Optimizing Scanning Acoustic Tomography Image Segmentation With Segment Anything Model for Semiconductor Devices
    Vu, Thi Thu Ha
    Vo, Tan Hung
    Nguyen, Trong Nhan
    Choi, Jaeyeop
    Mondal, Sudip
    Oh, Junghwan
    IEEE Transactions on Semiconductor Manufacturing, 2024, 37 (04) : 591 - 601
  • [10] Enhancing Diagnostic Images to Improve the Performance of the Segment Anything Model in Medical Image Segmentation
    Kong, Luoyi
    Huang, Mohan
    Zhang, Lingfeng
    Chan, Lawrence Wing Chi
    BIOENGINEERING-BASEL, 2024, 11 (03):