Neotelomeres and telomere-spanning chromosomal arm fusions in cancer genomes revealed by long-read sequencing

被引:2
|
作者
Tan, Kar-Tong [1 ,2 ,3 ]
Slevin, Michael K. [1 ]
Leibowitz, Mitchell L. [1 ,2 ,3 ]
Garrity-Janger, Max [1 ,2 ,3 ]
Shan, Jidong [4 ]
Li, Heng [1 ,3 ]
Meyerson, Matthew [1 ,2 ,3 ]
机构
[1] Dana Farber Canc Inst, Boston, MA 02215 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Harvard Med Sch, Boston, MA 02215 USA
[4] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10461 USA
来源
CELL GENOMICS | 2024年 / 4卷 / 07期
关键词
TERT PROMOTER MUTATIONS; CELL-LINES; VARIANT REPEATS; DNA; EVOLUTION; MECHANISMS; HALLMARKS; SUBSET; GENES; SITE;
D O I
10.1016/j.xgen.2024.100588
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Alterations in the structure and location of telomeres are pivotal in cancer genome evolution. Here, we applied both long-read and short-read genome sequencing to assess telomere repeat-containing structures in cancers and cancer cell lines. Using long-read genome sequences that span telomeric repeats, we defined four types of telomere repeat variations in cancer cells: neotelomeres where telomere addition heals chromosome breaks, chromosomal arm fusions spanning telomere repeats, fusions of neotelomeres, and peri-centromeric fusions with adjoined telomere and centromere repeats. These results provide a framework for the systematic study of telomeric repeats in cancer genomes, which could serve as a model for understanding the somatic evolution of other repetitive genomic elements.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] New telomeres and chromosomal arm fusions in cancer genomes revealed by long-read genome sequencing
    Tan, Kar-Tong
    Slevin, Michael K.
    Garrity-Janger, Max
    Li, Heng
    Meyerson, Matthew
    CANCER RESEARCH, 2022, 82 (12)
  • [2] Telomere dynamics in aging and cancer by nanopore long-read sequencing
    Schmidt, Tobias T.
    Tyer, Carly
    Rughani, Preeyesh
    Haggblom, Candy
    Jones, Jeff
    Dai, Xiaoguang
    Frazer, Kelly A.
    Gage, Fred H.
    Juul, Sissel
    Hickey, Scott
    Karlseder, Jan
    CANCER RESEARCH, 2024, 84 (06)
  • [3] Long-read sequencing of new Drosophila genomes
    Koch L.
    Nature Reviews Genetics, 2021, 22 (10) : 625 - 625
  • [4] Long-read sequencing for non-small-cell lung cancer genomes
    Sakamoto, Yoshitaka
    Xu, Liu
    Seki, Masahide
    Yokoyama, Toshiyuki T.
    Kasahara, Masahiro
    Kashima, Yukie
    Ohashi, Akihiro
    Shimada, Yoko
    Motoi, Noriko
    Tsuchihara, Katsuya
    Kobayashi, Susumu S.
    Kohno, Takashi
    Shiraishi, Yuichi
    Suzuki, Ayako
    Suzuki, Yutaka
    GENOME RESEARCH, 2020, 30 (09) : 1243 - 1257
  • [5] Application of long-read sequencing to the detection of structural variants in human cancer genomes
    Sakamoto, Yoshitaka
    Zaha, Suzuko
    Suzuki, Yutaka
    Seki, Masahide
    Suzuki, Ayako
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 : 4207 - 4216
  • [6] The Application of Long-Read Sequencing to Cancer
    Ermini, Luca
    Driguez, Patrick
    CANCERS, 2024, 16 (07)
  • [7] High resolution long-read telomere sequencing reveals dynamic mechanisms in aging and cancer
    Schmidt, Tobias T.
    Tyer, Carly
    Rughani, Preeyesh
    Haggblom, Candy
    Jones, Jeffrey R.
    Dai, Xiaoguang
    Frazer, Kelly A.
    Gage, Fred H.
    Juul, Sissel
    Hickey, Scott
    Karlseder, Jan
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] Long-read sequencing of pediatric cancer genomes identifies multiple clinically relevant variants
    Yoo, Byunggil
    Cheung, Warren
    Pushel, Irina
    Lansdon, Lisa
    Bi, Chengpeng
    Guest, Erin
    Pastinen, Tomi
    Farooqi, Midhat
    CANCER RESEARCH, 2023, 83 (07)
  • [9] Long-read DNA methylation analysis of whole cancer genomes using a nanopore sequencing
    Nagae, Genta
    Aburatani, Hiroyuki
    CANCER SCIENCE, 2024, 115 : 399 - 399
  • [10] Pathways to polar adaptation in fishes revealed by long-read sequencing
    Hotaling, Scott
    Desvignes, Thomas
    Sproul, John S.
    Lins, Luana S. F.
    Kelley, Joanna L.
    MOLECULAR ECOLOGY, 2022, : 1381 - 1397