Two-Layered Logics for Paraconsistent Probabilities

被引:0
|
作者
Bilkova, Marta [1 ]
Frittella, Sabine [2 ]
Kozhemiachenko, Daniil [2 ]
Majer, Ondrej [3 ]
机构
[1] Czech Acad Sci, Inst Comp Sci, Prague, Czech Republic
[2] Univ Orleans, INSA Ctr Val Loire, LIFO EA 4022, Blois, Loir & Cher, France
[3] Czech Acad Sci, Inst Philosophy, Prague, Czech Republic
关键词
two-layered logics; Lukasiewicz logic; non-standard probabilities; paraconsistent logics; constraint tableaux;
D O I
10.1007/978-3-031-39784-4_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss two-layered logics formalising reasoning with paraconsistent probabilities that combine the Lukasiewicz [0, 1]-valued logic with Baaz Delta operator and the Belnap-Dunn logic. The first logic Pr-Delta(L2) (introduced in [7]) formalises a 'two-valued' approach where each event phi has independent positive and negative measures that stand for, respectively, the likelihoods of phi and (sic)phi. The second logic 4Pr(L Delta) that we introduce here corresponds to 'four-valued' probabilities. There, phi is equipped with four measures standing for pure belief, pure disbelief, conflict and uncertainty of an agent in phi. We construct faithful embeddings of 4Pr(L Delta) and Pr-Delta(L2) into one another and axiomatise 4Pr(L Delta) using a Hilbert-style calculus. We also establish the decidability of both logics and provide complexity evaluations for them using an expansion of the constraint tableaux calculus for L.
引用
下载
收藏
页码:101 / 117
页数:17
相关论文
共 50 条
  • [1] PARACONSISTENT LOGICS
    SLATER, BH
    JOURNAL OF PHILOSOPHICAL LOGIC, 1995, 24 (04) : 451 - 454
  • [2] Classical and Fuzzy Two-Layered Modal Logics for Uncertainty: Translations and Proof-Theory
    Baldi, Paolo
    Cintula, Petr
    Noguera, Cartes
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2020, 13 (01) : 988 - 1001
  • [3] Classical and Fuzzy Two-Layered Modal Logics for Uncertainty: Translations and Proof-Theory
    Paolo Baldi
    Petr Cintula
    Carles Noguera
    International Journal of Computational Intelligence Systems, 2020, 13 : 988 - 1001
  • [4] Ideal Paraconsistent Logics
    O. Arieli
    A. Avron
    A. Zamansky
    Studia Logica, 2011, 99
  • [5] Paraconsistent Modal Logics
    Rivieccio, Umberto
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2011, 278 : 173 - 186
  • [6] Paraconsistent Orbits of Logics
    Edelcio G. de Souza
    Alexandre Costa-Leite
    Diogo H. B. Dias
    Logica Universalis, 2021, 15 : 271 - 289
  • [7] Paraconsistent Logics and Translations
    Itala M. Loffredo D’Ottaviano
    Hércules de Araújo Feitosa
    Synthese, 2000, 125 (1-2) : 77 - 95
  • [8] THE PARACONSISTENT LOGICS PJ
    DACOSTA, NCA
    SUBRAHMANIAN, VS
    VAGO, C
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1991, 37 (02): : 139 - 148
  • [9] Ideal Paraconsistent Logics
    Arieli, O.
    Avron, A.
    Zamansky, A.
    STUDIA LOGICA, 2011, 99 (1-3) : 31 - 60
  • [10] Paraconsistent Orbits of Logics
    de Souza, Edelcio G.
    Costa-Leite, Alexandre
    Dias, Diogo H. B.
    LOGICA UNIVERSALIS, 2021, 15 (03) : 271 - 289