Experimental study on CO2 sequestration performance of alkali activated fly ash and ground granulated blast furnace slag based foam concrete

被引:4
|
作者
Wei, Xiaobin [1 ,2 ,3 ]
Li, Jun [1 ]
Shi, Huawang [1 ]
Cao, Yapeng [4 ,5 ]
Liu, Gaojie [1 ]
机构
[1] Hebei Univ Engn, Sch Civil Engn, Handan 056038, Peoples R China
[2] Qinghai Res Inst Transportat, Xining 810016, Peoples R China
[3] Changan Univ, Sch Highway, Xian 710064, Peoples R China
[4] Chinese Acad Sci, Northwest Inst Ecoenvironm & Resources, State Key Lab Frozen Soil Engn, Lanzhou 730000, Peoples R China
[5] Ecole Ponts ParisTech, Navier Lab, 6&8 Av Blaise Pascal,Cite Descartes, F-77455 Champs Sur Marne, Marne La Vallee, France
关键词
Alkali activated foamed concrete; CO2 sequestration performance; Carbonation; Fly ash; Ground granulated blast furnace slag; Microscopic pore characteristics; ACCELERATED CARBONATION; CEMENT; RESISTANCE; STRENGTH; BINDERS;
D O I
10.1016/j.conbuildmat.2024.138043
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In an effort to reduce the emission level of carbon dioxide (CO2) from metallurgical, thermal, cement burning and other enterprises, an innovative solution is proposed in this study, which aims to sequester CO2 with alkali activated fly ash (FA) and ground granulated blast furnace slag (GGBFS) based foam concrete. The fluidity of alkali activated foam concrete (AAFC) fresh paste, dry density and compressive strength after hardening, micro-pore structure, carbonation products and CO2 sequestration capacity were comprehensively explored. The experimental findings indicated that the fluidity of AAFC slurry was almost unaffected by the content of foaming agent hydrogen peroxide (H2O2). When the H2O2 content ranges between 1 % and 3 %, the dry density of uncarbonated AAFC ranges approximately 752.3-365.2 kg/m(3), and the compressive strength of carbonated AAFC ranges about 1.01-0.21 MPa. Accelerated carbonation increased the dry density of uncarbonated AAFC samples. The porous structure of AAFC facilitated CO2 gas penetration into the matrix, leading to rapid carbonation. When the H2O2 content was 1 %, the compressive strength of fully carbonated AAFC was lower than that of non-carbonated AAFC; however, when the H2O2 content exceeded 1.5 %, the trend in compressive strength reversed. The carbonation kinetics of AAFC demonstrated a linear relationship with the square root of carbonation time, and the carbonation coefficient increases proportionally with H2O2 content. The porosity of AAFC increased from 61.05 % to 71.51 % as the H2O2 content increased from 1 % to 2.5 %. The main pore size distribution range of AAFC was 30-400 mu m and 5-50 nm. Accelerated carbonation minimally impacted the total porosity of AAFC but transformed certain large pores into capillary pores. Accelerated carbonation would generate calcite, aragonite, vaterite and additional amorphous phases. The maximum carbon sequestration capacity of AAFC, as determined in this study, reached 26.41 kg/m(3), indicating significant potential for CO2 sequestration.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete
    Manojsuburam, R.
    Sakthivel, E.
    Jayanthimani, E.
    MATERIALS TODAY-PROCEEDINGS, 2022, 62 (1761-1764) : 1761 - 1764
  • [2] Ground granulated blast furnace slag and fly ash concrete
    Hoang, M. D.
    Tran, Q. T.
    Lee, S. H.
    MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (07):
  • [3] Enhanced Concrete Performance and Sustainability with Fly Ash and Ground Granulated Blast Furnace Slag - A Comprehensive Experimental Study
    Cheruvu, Rajasekhar
    Rao, Burugupalli Kameswara
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (03) : 161 - 174
  • [4] Fly ash and ground granulated blast furnace slag-based alkali-activated concrete: Mechanical, transport and microstructural properties
    Mehta, Ankur
    Siddique, Rafat
    Ozbakkaloglu, Togay
    Shaikh, Faiz Uddin Ahmed
    Belarbi, Rafik
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 257
  • [5] Stabilisation of lithomargic clay using alkali activated fly ash and ground granulated blast furnace slag
    Amulya, S.
    Shankar, A. U. Ravi
    Praveen, Medari
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2020, 21 (09) : 1114 - 1121
  • [6] Autogenous shrinkage of fly ash and ground granulated blast furnace slag concrete
    Zhang, Yingda
    Afroz, Sumaiya
    Quang Dieu Nguyen
    Kim, Taehwan
    Duy Nguyen
    Castel, Arnaud
    Nairn, Jason
    Gilbert, Raymond Ian
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 283 - 295
  • [7] A study of alkali-activated concrete mixes with ground granulated blast furnace slag
    Mavroulidou, M.
    Martynkova, R.
    GLOBAL NEST JOURNAL, 2018, 20 (02): : 208 - 215
  • [8] Performance evaluation of fly ash and ground granulated blast furnace slag-based geopolymer concrete: A comparative study
    Yilmazoglu, Arif
    Yildirim, Salih Taner
    Behcet, Omer Faruk
    Yildiz, Sadik
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3898 - 3915
  • [9] CO2 mineral sequestration with the use of ground granulated blast furnace slag
    Uliasz-Bochenczyk, Alicja
    Mokrzycki, Geniusz
    GOSPODARKA SUROWCAMI MINERALNYMI-MINERAL RESOURCES MANAGEMENT, 2017, 33 (01): : 111 - 124
  • [10] Fundamental understanding of the setting behaviour of the alkali activated binders based on ground granulated blast furnace slag and fly ash
    Nedunuri, Aparna Sai Surya Sree
    Muhammad, Salman
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 291