A generalization of Kummer theory to Hopf-Galois extensions

被引:0
|
作者
Gil-Munoz, Daniel [1 ,2 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Dept Algebra, Sokolovska 83, Prague 8, Czech Republic
[2] Univ Barcelona, Inst Matemat, Gran Via Corts Catalanes 585, Barcelona 08007, Spain
关键词
Kummer extension; Hopf-Galois structure; H-eigevector; CYCLIC EXTENSION; INTEGRAL RING; 1ST DEGREE; FIELD;
D O I
10.1016/j.jalgebra.2024.07.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a condition for Hopf-Galois extensions that generalizes the notion of Kummer Galois extension. Namely, an H-Galois extension L/K is H-Kummer if L can be generated by adjoining to K a finite set S of eigenvectors for the action of the Hopf algebra Hon L. This extends the classical Kummer condition for the classical Galois structure. With this new perspective, we shall characterize a class of H-Kummer extensions L/K as radical extensions that are linearly disjoint with the n-th cyclotomic extension of K. This result generalizes the description of Kummer Galois extensions as radical extensions of a field containing the n-th roots of the unity. The main tool is the construction of a product Hopf-Galois structure on the compositum of almost classically Galois extensions L-1/K, L-2/K such that L-1 boolean AND M-2 = L-2 boolean AND M-1 = K, where Mi is a field such that LiMi = (L) over tilde (i), the normal closure of L-i/K. When L/K is an extension of number or p-adic fields, we shall derive criteria on the freeness of the ring of integers O-L over its associated order in an almost classically Galois structure on L/K. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:190 / 235
页数:46
相关论文
共 50 条
  • [1] On noncommutative Hopf-Galois extensions
    Jiang, Xiao-long
    Zhongshan Daxue Xuebao/Acta Scientiarum Natralium Universitatis Sunyatseni, 2000, 39 (03): : 11 - 14
  • [2] Hopf-Galois extensions and twisted Hopf algebroids
    Han, Xiao
    Majid, Shahn
    JOURNAL OF ALGEBRA, 2024, 641 : 754 - 794
  • [3] On piecewise trivial Hopf-Galois extensions
    Krahmer, U.
    Zielinski, B.
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1221 - 1226
  • [4] HOPF-GALOIS EXTENSIONS AND SMASH PRODUCTS
    YOKOGAWA, K
    JOURNAL OF ALGEBRA, 1987, 107 (01) : 138 - 152
  • [5] EXTENDING MODULES FOR HOPF-GALOIS EXTENSIONS
    MILITARU, G
    STEFAN, D
    COMMUNICATIONS IN ALGEBRA, 1994, 22 (14) : 5657 - 5678
  • [6] Equivalence theorems and Hopf-Galois extensions
    Menini, C
    Zuccoli, M
    JOURNAL OF ALGEBRA, 1997, 194 (01) : 245 - 274
  • [7] On Hopf-Galois extensions of linear categories
    Stanescu, Anca
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2012, 20 (03): : 111 - 130
  • [8] Homotopic Hopf-Galois extensions revisited
    Berglund, Alexander
    Hess, Kathryn
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (01) : 107 - 155
  • [9] HOCHSCHILD COHOMOLOGY ON HOPF-GALOIS EXTENSIONS
    STEFAN, D
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 103 (02) : 221 - 233
  • [10] Partial Hopf-Galois Theory
    Castro, F.
    Freitas, D.
    Paques, A.
    Quadros, G.
    Tamusiunas, T.
    ALGEBRA AND LOGIC, 2022, 61 (05) : 385 - 406