Trace dual of additive cyclic codes over finite fields

被引:0
|
作者
Verma, Gyanendra K. [1 ]
Sharma, R. K. [1 ,2 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi, India
[2] South Asian Univ, Fac Math & Comp Sci, New Delhi, India
关键词
Cyclic codes; Additive codes; Complementary dual; Trace map; NEGACYCLIC CODES;
D O I
10.1007/s12095-024-00741-y
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In (Shi et al. Finite Fields Appl.80, 102087 2022) studied additive cyclic complementary dual codes with respect to trace Euclidean and trace Hermitian inner products over the finite field F4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_4$$\end{document}. In this article, we extend their results over Fq2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_{q<^>2},$$\end{document} where q is an odd prime power. We describe the algebraic structure of additive cyclic codes and obtain the dual of a class of these codes with respect to the trace inner products. We also use generating polynomials to construct several examples of additive cyclic codes over F9.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_9.$$\end{document} These codes are better than linear codes of the same length and size. Furthermore, we describe the subfield codes and the trace codes of these codes as linear cyclic codes over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {F}_q$$\end{document}.
引用
收藏
页码:1593 / 1608
页数:16
相关论文
共 50 条
  • [1] On Self-Dual Cyclic Codes Over Finite Fields
    Jia, Yan
    Ling, San
    Xing, Chaoping
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) : 2243 - 2251
  • [2] The number of self-dual cyclic codes over finite fields
    Zhang, Qiang
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024,
  • [3] LCD Cyclic Codes Over Finite Fields
    Li, Chengju
    Ding, Cunsheng
    Li, Shuxing
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4344 - 4356
  • [4] Isometry groups of additive codes over finite fields
    Wood, Jay A.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (10)
  • [5] Construction of quasi-cyclic self-dual codes over finite fields
    Choi, Whan-Hyuk
    Kim, Hyun Jin
    Lee, Yoonjin
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (06): : 1017 - 1043
  • [6] Extremal quasi-cyclic self-dual codes over finite fields
    Kim, Hyun Jin
    Lee, Yoonjin
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 301 - 318
  • [7] Self-dual Repeated Root Cyclic and Negacyclic Codes over Finite Fields
    Guenda, K.
    Gulliver, T. A.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012,
  • [8] Some minimal cyclic codes over finite fields
    Chen, Bocong
    Liu, Hongwei
    Zhang, Guanghui
    [J]. DISCRETE MATHEMATICS, 2014, 331 : 142 - 150
  • [9] Cyclic Codes from A Sequence over Finite Fields
    Nopendri
    Alamsyah, Intan Muchtadi
    Suprijanto, Djoko
    Barra, Aleams
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (03): : 685 - 694
  • [10] A sequence construction of cyclic codes over finite fields
    Ding, Cunsheng
    [J]. CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (02): : 319 - 341