Short-term multivariate airworthiness forecasting based on decomposition and deep prediction models

被引:0
|
作者
Tatli, Ali [1 ]
Filik, Tansu [2 ]
Bocu, Erdogan [3 ]
Karakoc, Hikmet Tahir [4 ]
机构
[1] Erzincan Binali Yildirim Univ, Avion, Erzincan, Turkiye
[2] Eskisehir Tech Univ, Elect Elect Engn, Eskisehir, Turkiye
[3] Eskisehir Tech Univ, Flight Training, Eskisehir, Turkiye
[4] Eskisehir Tech Univ, Airframe & Powerplant Maintenance, Eskisehir, Turkiye
关键词
airworthiness; decomposition; deep neural networks; forecasting; schedule management;
D O I
10.1002/for.3179
中图分类号
F [经济];
学科分类号
02 ;
摘要
This study introduces a model for predicting airworthiness in terms of meteorology information within the viewpoint of not only formal regulations but also informal rules based on acquired indicators from flight training organization experience (AIs-FTOE). The case study is carried out in the Hasan Polatkan Airport which is used by the Department of Flight Training of Eski & scedil;ehir Technical University (ESTU-P), which is also recognized as a flight training organization. Within the study, the constraints (derived from regulations and AIs-FTOE) and the data set used in models are explained. Also, the models are introduced based on the gated recurrent unit (GRU) and long short-term memory (LSTM) with the use of empirical mode decomposition (EMD) and variational mode decomposition (VMD). Finally, a model-selective mechanism (MSM) is proposed to use the models in common. The findings show that the models presented in the study produce successful results that can be used in flight training organization's (FTO) planning studies. The MSM uses GRU and LSTM together with decomposition techniques to provide more advanced prediction capabilities. When the literature is examined, it is observed that although meteorological conditions are of vital importance in the efficiency of FTOs, there are not enough studies on airworthiness based on meteorology. So, a model that will assist in scheduling plans is presented for FTOs. Airworthiness analysis of forecasting can provide a comprehensive reference to support planning efficiency in FTOs. To the authors' knowledge, this study will be the first in the literature on airworthiness that presents the MSM using a hybrid deep learning algorithm and decomposition of time series models in concurrent.
引用
收藏
页码:41 / 58
页数:18
相关论文
共 50 条
  • [1] SHORT-TERM PHOTOVOLTAIC POWER FORECASTING BASED ON MULTIVARIATE VARIATIONAL MODE DECOMPOSITION AND HYBRID DEEP NEURAL NETWORK
    Guo W.
    Sun S.
    Tao P.
    Xu J.
    Bai X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (04): : 489 - 499
  • [2] Interval prediction for short-term traffic forecasting using hybrid mode decomposition models
    Sopena, Juan Manuel Gonzalez
    Pakrashi, Vikram
    Ghosh, Bidisha
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 3246 - 3251
  • [3] Short-Term Traffic Forecasting Using Multivariate Autoregressive Models
    Pavlyuk, Dmitry
    PROCEEDINGS OF THE 16TH INTERNATIONAL SCIENTIFIC CONFERENCE RELIABILITY AND STATISTICS IN TRANSPORTATION AND COMMUNICATION (RELSTAT-2016), 2017, 178 : 57 - 66
  • [4] Deep Learning Based on Multi-Decomposition for Short-Term Load Forecasting
    Kim, Seon Hyeog
    Lee, Gyul
    Kwon, Gu-Young
    Kim, Do-In
    Shin, Yong-June
    ENERGIES, 2018, 11 (12)
  • [5] Short-Term Load Forecasting Based on Frequency Domain Decomposition and Deep Learning
    Zhang, Qian
    Ma, Yuan
    Li, Guoli
    Ma, Jinhui
    Ding, Jinjin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [6] Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
    Chen, Jiayu
    Liu, Lisang
    Guo, Kaiqi
    Liu, Shurui
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [7] A short-term wind power forecasting method based on multivariate signal decomposition and variable selection
    Yang, Ting
    Yang, Zhenning
    Li, Fei
    Wang, Hengyu
    APPLIED ENERGY, 2024, 360
  • [8] Research on Short-Term Wind Power Prediction Based on Combined Forecasting Models
    Zhang, Chi
    Zeng, Jie
    Xie, Ning
    Yang, Ping
    Zhang, Yujia
    Zhang, Zhen
    2016 3RD INTERNATIONAL CONFERENCE ON MANUFACTURING AND INDUSTRIAL TECHNOLOGIES, 2016, 70
  • [9] A hybrid forecasting model for very short-term wind speed prediction based on secondary decomposition and deep learning algorithms
    Keke Ma
    Wenyu Zhang
    Zhenhai Guo
    Jing Zhao
    Wenzhi Qiu
    Earth Science Informatics, 2023, 16 : 2421 - 2438
  • [10] A hybrid forecasting model for very short-term wind speed prediction based on secondary decomposition and deep learning algorithms
    Ma, Keke
    Zhang, Wenyu
    Guo, Zhenhai
    Zhao, Jing
    Qiu, Wenzhi
    EARTH SCIENCE INFORMATICS, 2023, 16 (03) : 2421 - 2438