SR-DSGA: Session Recommendation for Dual Sequence Based on Graph Neural Network and Multi-Attention

被引:0
|
作者
Tian, Baojun [1 ]
Liu, Nana [1 ]
Fang, Jiandong [1 ]
机构
[1] Inner Mongolia Univ Technol, Coll Informat Engn, Hohhot 010080, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Graph neural networks; Predictive models; Computational modeling; Vectors; Recurrent neural networks; Recommender systems; Logic gates; Session recommendation; behavior features; dual sequence modeling; graph neural network; multi-attention;
D O I
10.1109/ACCESS.2024.3440351
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Session recommender system (SRS) captures user's sequential features based on historical behavior to predict the next-clicked item. The accuracy of extracting user's session features directly determines the key performance of SRS. Existing session recommendation methods have two flaws: 1) ignore the complex connections between items, i.e. represent them in a relatively isolated manner; 2) neglect the transition patterns between attributes of items. To address these issues, we propose a novel session recommendation model named SR-DSGA (Session Recommendation for Dual Sequence based on Graph neural network and multi-attention). Firstly, SR-DSGA adopts message passing mechanism in graph neural network to get non-isolated item embedding representations with specific semantic relationship by item-level explicit sequence modeling. Secondly, SR-DSGA exploits the Transformer's multi-head self-attention mechanism to indirectly obtain item embedding representations in another way through item attribute-level implicit sequence modeling. Therefore, SR-DSGA can help extract the fine-grained features with full sequential patterns even in sparse data scenarios. Finally, soft-attention and time threshold are used to acquire user's long-term and short-term preferences respectively. Experimental studies on real-world datasets demonstrate the proposed SR-DSGA model outperforms the state-of-the-art benchmark methods.
引用
收藏
页码:109380 / 109387
页数:8
相关论文
共 50 条
  • [1] Graph Context Target Attention Graph Neural Network for Session-based Recommendation
    Chen, Jiale
    Xing, Xing
    Niu, Yong
    Zhang, Xuanming
    Jia, Zhichun
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 83 - 88
  • [2] Sequence-Aware Graph Neural Network for Session-based Recommendation
    Huang, Zhencheng
    Wu, Dehao
    Weng, Zhenyu
    Zhu, Yuesheng
    Bai, Zhiqiang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [3] Kernel multi-attention neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [4] Kernel multi-attention neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Knowledge-Based Systems, 2021, 227
  • [5] Double-Branch Multi-Attention based Graph Neural Network for Knowledge Graph Completion
    Xu, Hongcai
    Bao, Junpeng
    Liu, Wenbo
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 15257 - 15271
  • [6] SR-HetGNN: session-based recommendation with heterogeneous graph neural network
    Jinpeng Chen
    Haiyang Li
    Xudong Zhang
    Fan Zhang
    Senzhang Wang
    Kaimin Wei
    Jiaqi Ji
    Knowledge and Information Systems, 2024, 66 : 1111 - 1134
  • [7] SR-HetGNN: session-based recommendation with heterogeneous graph neural network
    Chen, Jinpeng
    Li, Haiyang
    Zhang, Xudong
    Zhang, Fan
    Wang, Senzhang
    Wei, Kaimin
    Ji, Jiaqi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (02) : 1111 - 1134
  • [8] Multi-behavior Attention Mechanisms Graph Neural Networks based on Session Recommendation
    Xing, Xing
    Zhang, Xuanming
    Cui, Jianfu
    Chen, Jiale
    Jia, Zhichun
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4213 - 4217
  • [9] SEDGN: Sequence enhanced denoising graph neural network for session-based recommendation
    Zhang, Chunkai
    Zheng, Wenjing
    Liu, Quan
    Nie, Junli
    Zhang, Hanyu
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203
  • [10] MDGNN: Microbial Drug Prediction Based on Heterogeneous Multi-Attention Graph Neural Network
    Pi, Jiangsheng
    Jiao, Peishun
    Zhang, Yang
    Li, Junyi
    FRONTIERS IN MICROBIOLOGY, 2022, 13