Realization of kagome lattice and superconductivity in topological electrides

被引:4
|
作者
Wei, Yu-Hao [1 ,2 ]
Liu, Hao-Dong [3 ,4 ]
Ma, Da-Shuai [5 ,6 ,7 ,8 ]
Yuan, Hong-Kuan [1 ,2 ]
Wang, Bao-Tian [3 ,4 ]
Kuang, Min-Quan [1 ,2 ]
机构
[1] Southwest Univ, Chongqing Key Lab Micro & Nano Struct Optoelect, Chongqing 400715, Peoples R China
[2] Southwest Univ, Sch Phys Sci & Technol, Chongqing 400715, Peoples R China
[3] Chinese Acad Sci, Inst High Energy Phys, Beijing 100049, Peoples R China
[4] Spallat Neutron Source Sci Ctr, Dongguan 523803, Peoples R China
[5] Chongqing Univ, Inst Struct & Funct, Chongqing 400044, Peoples R China
[6] Chongqing Univ, Dept Phys, Chongqing 400044, Peoples R China
[7] Chongqing Univ, Chongqing Key Lab Strongly Coupled Phys, Chongqing 400044, Peoples R China
[8] Chongqing Univ, Ctr Quantum Mat & Devices, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSITION-TEMPERATURE; ORDER; WAVE; REPRESENTATIONS; ELECTRONS; PHASE;
D O I
10.1103/PhysRevB.110.054511
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Realization of kagome lattice, and hence achieving specific performance, is a challenging issue in condensed matter physics. The corner-sharing triangles of kagome lattice are normally comprised of real atoms occupying certain Wyckoff sites. Here, we propose that the excess electrons in layered electrides Mg3N 3 N and Mg3O 3 O build the two-dimensional kagome lattices. The interstitial electrons further contribute to the nontrivial band topology, i.e., the Dirac points and the Dirac nodal lines in Mg3N 3 N and Mg3O. 3 O. Further, the in-plane coupling between the electronic orbitals and the atomic vibrational modes dominate the electron-phonon coupling, and yield superconducting critical temperatures approaching 2.0 and 2.2 K for Mg3N 3 N and Mg3O, 3 O, respectively. This work proposes a feasible scheme to construct kagome lattices by interstitial quasiatoms and provides a promising platform to explore the superconductivity and nontrivial band topology in kagome electrides.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Topological insulator on the kagome lattice
    Guo, H. -M.
    Franz, M.
    PHYSICAL REVIEW B, 2009, 80 (11):
  • [2] Robust A 1 superconductivity in the kagome lattice
    Gao, Yi
    PHYSICAL REVIEW B, 2024, 109 (21)
  • [3] Emergent Kagome Electrides
    You, Jing-Yang
    Gu, Bo
    Su, Gang
    Feng, Yuan Ping
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (12) : 5527 - 5534
  • [4] Exploring the Coexistence Conditions and Intrinsic Relationships between Electrides, Superconductivity, Kagome Lattice, and Superionic Behaviors in Li-Ge Compounds
    Wang, Xinwei
    Tang, Wenting
    Sun, Xiao-Wei
    Liu, Zi-Jiang
    Cao, Bohan
    Yang, Mengxin
    Sun, Yibo
    Cui, Tian
    Li, Liang
    Tian, Fubo
    ACS MATERIALS LETTERS, 2024, 6 (08): : 3697 - 3704
  • [5] On Computations of Topological Descriptors of Kagome Lattice
    Iqbal, Zahid
    Aslam, Adnan
    Ishaq, Muhammad
    Gao, Wei
    POLYCYCLIC AROMATIC COMPOUNDS, 2022, 42 (08) : 4895 - 4909
  • [6] Topological bulk laser in kagome lattice
    Wong, Stephan
    Oh, Sang Soon
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [7] Topological Quantum Materials with Kagome Lattice
    Wang, Qi
    Lei, Hechang
    Qi, Yanpeng
    Felser, Claudia
    ACCOUNTS OF MATERIALS RESEARCH, 2024, 5 (07): : 786 - 796
  • [8] Topological states on the breathing kagome lattice
    Bolens, Adrien
    Nagaosa, Naoto
    PHYSICAL REVIEW B, 2019, 99 (16)
  • [9] Topological magnons on the triangular kagome lattice
    Zhang, Meng-Han
    Yao, Dao-Xin
    PHYSICAL REVIEW B, 2023, 107 (02)
  • [10] Superconductivity from repulsive interactions on the kagome lattice
    Romer, Astrid T.
    Bhattacharyya, Shinibali
    Valenti, Roser
    Christensen, Morten H.
    Andersen, Brian M.
    PHYSICAL REVIEW B, 2022, 106 (17)