AdamTS proteases control basement membrane heterogeneity and organ shape in Drosophila

被引:1
|
作者
Toepfer, Uwe [1 ,2 ]
Ryu, Jinhee [2 ]
Santillan, Karla Yanin Guerra [2 ,3 ]
Schulze, Jana [2 ,5 ]
Fischer-Friedrich, Elisabeth [4 ]
Tanentzapf, Guy [1 ,3 ]
Dahmann, Christian [2 ,3 ]
机构
[1] Univ British Columbia, Dept Cellular & Physiol Sci, Vancouver, BC V6T 1Z3, Canada
[2] Tech Univ Dresden, Sch Sci, D-01062 Dresden, Germany
[3] Tech Univ Dresden, Cluster Excellence Phys Life, D-01062 Dresden, Germany
[4] Tech Univ Dresden, Biotechnol Ctr, D-01062 Dresden, Germany
[5] Univ Hosp Freiburg, Dept Hematol Oncol, Sect Mol Hematol, D-79106 Freiburg, Germany
来源
CELL REPORTS | 2024年 / 43卷 / 07期
基金
加拿大健康研究院;
关键词
EXTRACELLULAR-MATRIX VISCOELASTICITY; EGG CHAMBER ELONGATION; DYNAMIC MOVEMENT; CELL-MIGRATION; MORPHOGENESIS; PROTEINS; METALLOPROTEASE; ARCHITECTURE; FIBRILLIN-1; DEPOSITION;
D O I
10.1016/j.celrep.2024.114399
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The basement membrane (BM) is an extracellular matrix that plays important roles in animal development. A spatial heterogeneity in composition and structural properties of the BM provide cells with vital cues for morphogenetic processes such as cell migration or cell polarization. Here, using the Drosophila egg chamber as a model system, we show that the BM becomes heterogeneous during development, with a reduction in Collagen IV density at the posterior pole and differences in the micropattern of aligned fiber-like structures. We identified two AdamTS matrix proteases required for the proper elongated shape of the egg chamber, yet the molecular mechanisms by which they act are different. Stall is required to establish BM heterogeneity by locally limiting Collagen IV protein density, whereas AdamTS-A alters the micropattern of fiber-like structures within the BM at the posterior pole. Our results suggest that AdamTS proteases control BM heterogeneity required for organ shape.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] BASEMENT-MEMBRANE HETEROGENEITY
    BOSMAN, FT
    CLEUTJENS, J
    BEEK, C
    HAVENITH, M
    HISTOCHEMICAL JOURNAL, 1989, 21 (11): : 629 - 633
  • [2] Beyond proteases: Basement membrane mechanics and cancer invasion
    Chang, Julie
    Chaudhuri, Ovijit
    JOURNAL OF CELL BIOLOGY, 2019, 218 (08): : 2456 - 2469
  • [3] Control of the basement membrane and cell migration by ADAMTS proteinases: Lessons from C. elegans genetics
    Kim, Hon-Song
    Nishiwaki, Kiyoji
    MATRIX BIOLOGY, 2015, 44-46 : 64 - 69
  • [4] BASEMENT-MEMBRANE SYNTHESIS IN DROSOPHILA EMBRYOS
    FESSLER, LI
    CAMPBELL, AG
    BLUMBERG, B
    MACKRELL, A
    FESSLER, JH
    JOURNAL OF CELLULAR BIOCHEMISTRY, 1987, : 287 - 287
  • [5] Dynamic basement membrane remodelling for organ morphogenesis
    Horne-Badovinac, S.
    INTERNATIONAL JOURNAL OF EXPERIMENTAL PATHOLOGY, 2021, 102 (02) : 116 - 116
  • [6] ACTION OF NEUTROPHIL PROTEASES ON HUMAN GLOMERULAR BASEMENT-MEMBRANE
    DAVIES, M
    SANDERS, E
    COLES, GA
    CLINICAL SCIENCE AND MOLECULAR MEDICINE, 1977, 52 (02): : P31 - P31
  • [7] How membrane proteases control membrane lipids
    Goldstein, JL
    Brown, MS
    FASEB JOURNAL, 1999, 13 (07): : A1330 - A1330
  • [8] Drosophila cell lines as the source of basement membrane components
    Kumagai, C
    Azimi, M
    Kadowaki, T
    Kitagawa, Y
    ANIMAL CELL TECHNOLOGY: BASIC & APPLIED ASPECTS, VOL 9, 1998, : 275 - 278
  • [9] Dynamics of the basement membrane in invasive epithelial clusters in Drosophila
    Medioni, C
    Noselli, S
    DEVELOPMENT, 2005, 132 (13): : 3069 - 3077
  • [10] Linking Basement Membrane and Slit Diaphragm in Drosophila Nephrocytes
    Leroy, Claire
    Lang, Konrad
    Spitz, Dominik
    Milosavljevic, Julian
    Heinkele, Helena
    Kayser, Severine
    Helmstaedter, Martin
    Walz, Gerd
    Ulbrich, Maximilian H.
    Hermle, Tobias
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 35 (09): : 1208 - 1226