Some new characterizations of spheres and Euclidean spaces using conformal vector fields

被引:0
|
作者
Deshmukh, Sharief [1 ]
Guediri, Mohammed [1 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, Box 2455, Riyadh 11451, Saudi Arabia
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 10期
关键词
conformal field; conformal factor; isometric to sphere; isometric to Euclidean space; EINSTEIN-SPACES;
D O I
10.3934/math.20241395
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a conformal vector field X defined on an n-dimensional Riemannian manifold (Nn, N n , g ), naturally associated to X are the conformal factor sigma , a smooth function defined on N n , and a skew symmetric (1,1) , 1) tensor field e , called the associated tensor, that is defined using the 1-form dual to X . In this article, we prove two results. In the first result, we show that if an n-dimensional compact and connected Riemannian manifold (Nn, N n , g ), n > 1, of positive Ricci curvature admits a nontrivial (non- Killing) conformal vector field X with conformal factor sigma such that its Ricci operator Rc and scalar curvature tau satisfy Rc (X) X ) = - ( n - 1)del sigma del sigma and X ( tau ) = 2 sigma sigma (n(n n ( n - 1)c c - tau ) for a constant c , necessarily c > 0 and (Nn, N n , g ) is isometric to the sphere S n c of constant curvature c . The converse is also shown to be true. In the second result, it is shown that an n-dimensional complete and connected Riemannian manifold (Nn, N n , g ), n > 1, admits a nontrivial conformal vector field X with conformal factor sigma and associated tensor e satisfying Rc (X) X ) = - div e and e (X) X ) = 0, , if and only if (Nn, N n , g ) is isometric to the Euclidean space (En, E n , < , > ).
引用
收藏
页码:28765 / 28777
页数:13
相关论文
共 50 条
  • [1] Characterizations of Spheres and Euclidean Spaces by Conformal Vector Fields
    Deshmukh, Sharief
    Bin Turki, Nasser
    Sharma, Ramesh
    MATHEMATICS, 2024, 12 (20)
  • [2] Some characterizations of spheres by conformal vector fields
    Ye J.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 49 - 58
  • [3] Characterizing spheres and Euclidean spaces by conformal vector fields
    Sharief Deshmukh
    Annali di Matematica Pura ed Applicata (1923 -), 2017, 196 : 2135 - 2145
  • [4] Characterizing spheres and Euclidean spaces by conformal vector fields
    Deshmukh, Sharief
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (06) : 2135 - 2145
  • [5] Spheres and Euclidean Spaces Via Concircular Vector Fields
    Sharief Deshmukh
    Kazim Ilarslan
    Hana Alsodais
    Uday Chand De
    Mediterranean Journal of Mathematics, 2021, 18
  • [6] Spheres and Euclidean Spaces Via Concircular Vector Fields
    Deshmukh, Sharief
    Ilarslan, Kazim
    Alsodais, Hana
    De, Uday Chand
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [7] Characterizing spheres by conformal vector fields
    Deshmukh S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2010, 56 (2) : 231 - 236
  • [8] Conformal vector fields on submanifolds of a Euclidean space
    Alohali, Hanan
    Alodan, Haila
    Deshmukh, Sharief
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2017, 91 (1-2): : 217 - 233
  • [9] Some geometric characterizations of Pythagorean and Euclidean fields
    Groger, Detlef
    JOURNAL OF GEOMETRY, 2021, 112 (01)
  • [10] Some geometric characterizations of Pythagorean and Euclidean fields
    Detlef Gröger
    Journal of Geometry, 2021, 112