An Anomaly Detection Approach Based on Bidirectional Temporal Convolutional Network and Multi-Head Attention Mechanism

被引:0
|
作者
Wang, Rui [1 ]
Li, Jiayao [2 ]
机构
[1] Shanxi Polytech Coll, Taiyuan 030006, Peoples R China
[2] Shanxi Agr Univ, Sch Software, Taigu 030801, Peoples R China
来源
INFORMATION TECHNOLOGY AND CONTROL | 2024年 / 53卷 / 01期
关键词
Anomaly Detection; Bidirectional Temporal Convolutional Network; Multi-head Attention Mechanism; ELU Activation Function; OUTLIER DETECTION;
D O I
10.5755/j01.itc.53.1.34254
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Anomaly detection aims at detecting the data instances that deviate from the majority of data, and it is widely used in various fields for its ability to ensure the quality of the overall data. However, traditional anomaly detection methods face the problems such as low efficiency due to high data complexity and lack of data labels. At the same time, most methods only learn the forward features of time-series data, while lacking attention to the reverse features. For these disadvantages, this paper designs an anomaly detection approach called BiTCN-MHA based on the bidirectional temporal convolutional network (BiTCN) and multi-head attention (MHA) mechanism, which learns the features of anomalous data by capturing the forward and reverse temporal features in the time-series data, as well as solves the problems of feature information overload and neuron "death" by using MHA mechanism and ELU activation function, respectively, thereby quickly and accurately detecting anomalous data. Extensive experiments on six public datasets show that compared with eight state-of-the-arts, the proposed BiTCN-MHA method can improve the precision, recall, AUC and F1-Score by about 6.10%, 10.16%, 4.06% and 8.50%, respectively, especially having better detection performance on small time-series data.
引用
收藏
页码:37 / 52
页数:16
相关论文
共 50 条
  • [1] A malicious network traffic detection model based on bidirectional temporal convolutional network with multi-head self-attention mechanism
    Cai, Saihua
    Xu, Han
    Liu, Mingjie
    Chen, Zhilin
    Zhang, Guofeng
    COMPUTERS & SECURITY, 2024, 136
  • [2] Detection of malicious URLs using Temporal Convolutional Network and Multi-Head Self-Attention mechanism
    Nguyet Quang Do
    Selamat, Ali
    Krejcar, Ondrej
    Fujita, Hamido
    APPLIED SOFT COMPUTING, 2025, 169
  • [3] Multi-Scale Temporal Convolutional Networks and Multi-Head Attention for Robust Log Anomaly Detection
    Zhang, Zhigang
    Li, Wei
    Wang, Yizhe
    Wang, Zhe
    Sheng, Xiang
    Zhou, Tianxiang
    INFORMATION TECHNOLOGY AND CONTROL, 2024, 53 (03):
  • [4] Research on Transportation Mode Recognition Based on Multi-Head Attention Temporal Convolutional Network
    Cheng, Shuyu
    Liu, Yingan
    SENSORS, 2023, 23 (07)
  • [5] A Network Intrusion Detection Model Based on BiLSTM with Multi-Head Attention Mechanism
    Zhang, Jingqi
    Zhang, Xin
    Liu, Zhaojun
    Fu, Fa
    Jiao, Yihan
    Xu, Fei
    ELECTRONICS, 2023, 12 (19)
  • [6] Temporal convolutional approach with residual multi-head attention mechanism for remaining useful life of manufacturing tools
    Guo, Baosu
    Qiao, Zhaohui
    Dong, Hao
    Wang, Zhen
    Huang, Shuiquan
    Xu, Zhengkai
    Wu, Fenghe
    Huang, Chuanzhen
    Ni, Qing
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 128
  • [7] Sarcasm Detection Using Multi-Head Attention Based Bidirectional LSTM
    Kumar, Avinash
    Narapareddy, Vishnu Teja
    Aditya Srikanth, Veerubhotla
    Malapati, Aruna
    Neti, Lalita Bhanu Murthy
    IEEE ACCESS, 2020, 8 : 6388 - 6397
  • [8] Multi-Head Spatio-Temporal Attention Mechanism for Urban Anomaly Event Prediction
    Huang, Huiqun
    Yang, Xi
    He, Suining
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (03):
  • [9] Remaining Useful Life Prediction of Bearings Based on Multi-head Self-attention Mechanism, Multi-scale Temporal Convolutional Network and Convolutional Neural Network
    Wei, Hao
    Gu, Yu
    Zhang, Qinghua
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 3027 - 3032
  • [10] Multi-head attention graph convolutional network model: End-to-end entity and relation joint extraction based on multi-head attention graph convolutional network
    Tao, Zhihua
    Ouyang, Chunping
    Liu, Yongbin
    Chung, Tonglee
    Cao, Yixin
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (02) : 468 - 477