Influence of infill patterns and densities on the fatigue performance and fracture behavior of 3D-printed carbon fiber-reinforced PLA composites

被引:0
|
作者
Dawood, Lubna Layth [1 ]
Alameen, Ehsan Sabah [1 ]
机构
[1] Mustansiriyah Univ, Dept Mech Engn, Baghdad, Iraq
关键词
PLA; CF; tri-hexagon; infill ratio; printing patterns; fatigue test; MECHANICAL-PROPERTIES; PROCESS PARAMETERS; PARTS;
D O I
10.3934/matersci.2024041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper studied the mechanical properties of carbon fiber-reinforced polylactic acid (CF-PLA) samples manufactured with three different 3D-printed patterns: gyroid, tri-hexagon, and triangular. Filler content was generated in the samples at infill ratios of 30%, 60%, and 90%. Conventional tensile, flexural, impact, and fatigue tests were conducted to investigate the mechanical properties. It was found that the gyroid infill pattern enhanced performance, exhibiting tensile strength and modulus of elasticity up to 63% and 13% greater, respectively, than the tri-hexagon pattern at a 90% infill ratio. The fatigue life improvement was 113% compared with the tri-hexagon pattern. The tensile strength and modulus of elasticity increased up to 35% and 40% after including carbon fibers. The increase in flexural modulus was 30% compared to the triangular pattern, whereas impact energy absorption reached the best result with the triangular pattern, up to 89% more than the gyroid pattern. These results elucidate the optimization of infill patterns and ratios together with carbon fiber reinforcement for the development of CF-PLA components as a high-performance 3D printing solution for a wide range of engineering applications.
引用
收藏
页码:833 / 857
页数:25
相关论文
共 50 条
  • [1] Fracture behavior of 3D printed carbon fiber-reinforced polymer composites
    Yavas, Denizhan
    Zhang, Ziyang
    Liu, Qingyang
    Wu, Dazhong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 208
  • [2] Performance enhancement of 3D-printed carbon fiber-reinforced nylon 6 composites
    Chen, Siyu
    Cai, Longfei
    Duan, Yingzhu
    Jing, Xishuang
    Zhang, Chengyang
    Xie, Fubao
    POLYMER COMPOSITES, 2024, 45 (06) : 5754 - 5772
  • [3] Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites
    Mohammadizadeh, Mahdi
    Fidan, Ismail
    JOURNAL OF MANUFACTURING AND MATERIALS PROCESSING, 2021, 5 (03):
  • [4] Experimental and numerical investigations of 3D-printed glass fiber reinforced onyx composites with infill patterns
    Nikiema, Daouda
    Balland, Pascale
    Sergent, Alain
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024,
  • [5] Investigation of recovery behavior on 3D-printed continuous plant fiber-reinforced composites
    Long, Yu
    Zhang, Zhongsen
    Bi, Zhixiong
    Fu, Kunkun
    Li, Yan
    ADDITIVE MANUFACTURING, 2024, 88
  • [6] Recent developments in improving the fracture toughness of 3D-printed fiber-reinforced polymer composites
    Khan, Tayyab
    Ali, Murad
    Riaz, Zakia
    Butt, Haider
    Abu Al-Rub, Rashid K.
    Dong, Yu
    Umer, Rehan
    COMPOSITES PART B-ENGINEERING, 2024, 283
  • [7] Flexural Behavior of 3D-Printed Carbon Fiber-Reinforced Nylon Lattice Beams
    Yalçın, Muhammet Muaz
    Polymers, 2024, 16 (21)
  • [8] Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites
    Tian, Xiaoyong
    Liu, Tengfei
    Yang, Chuncheng
    Wang, Qingrui
    Li, Dichen
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2016, 88 : 198 - 205
  • [9] Mechanical performances of printed carbon fiber-reinforced PLA and PETG composites
    Ammar, Sirine
    Ben Fraj, Boutheina
    Hentati, Hamdi
    Saouab, Abdelghani
    Ben Amar, Mounir
    Haddar, Mohamed
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART L-JOURNAL OF MATERIALS-DESIGN AND APPLICATIONS, 2024, 238 (08) : 1488 - 1499
  • [10] Effect of infill patterns on the mechanical performance of lightweight 3D-printed cellular PLA parts
    Lubombo, Christian
    Huneault, Michel A.
    MATERIALS TODAY COMMUNICATIONS, 2018, 17 : 214 - 228