Leveraging Deep Learning for Time-Series Extrinsic Regression in Predicting the Photometric Metallicity of Fundamental-Mode RR Lyrae Stars

被引:0
|
作者
Monti, Lorenzo [1 ]
Muraveva, Tatiana [1 ]
Clementini, Gisella [1 ]
Garofalo, Alessia [1 ]
机构
[1] INAF Osservatorio Astrofis & Sci Spazio Bologna, Via Piero Gobetti 93-3, I-40129 Bologna, Italy
关键词
deep learning; recurrent neural networks; convolutional neural networks; time-series extrinsic regression; CLASSIFICATION; VARIABLES;
D O I
10.3390/s24165203
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Astronomy is entering an unprecedented era of big-data science, driven by missions like the ESA's Gaia telescope, which aims to map the Milky Way in three dimensions. Gaia's vast dataset presents a monumental challenge for traditional analysis methods. The sheer scale of this data exceeds the capabilities of manual exploration, necessitating the utilization of advanced computational techniques. In response to this challenge, we developed a novel approach leveraging deep learning to estimate the metallicity of fundamental mode (ab-type) RR Lyrae stars from their light curves in the Gaia optical G-band. Our study explores applying deep-learning techniques, particularly advanced neural-network architectures, in predicting photometric metallicity from time-series data. Our deep-learning models demonstrated notable predictive performance, with a low mean absolute error (MAE) of 0.0565, the root mean square error (RMSE) of 0.0765, and a high R2 regression performance of 0.9401, measured by cross-validation. The weighted mean absolute error (wMAE) is 0.0563, while the weighted root mean square error (wRMSE) is 0.0763. These results showcase the effectiveness of our approach in accurately estimating metallicity values. Our work underscores the importance of deep learning in astronomical research, particularly with large datasets from missions like Gaia. By harnessing the power of deep-learning methods, we can provide precision in analyzing vast datasets, contributing to more precise and comprehensive insights into complex astronomical phenomena.
引用
收藏
页数:23
相关论文
共 29 条
  • [1] Photometric Metallicity Prediction of Fundamental-mode RR Lyrae Stars in the Gaia Optical and K s Infrared Wave Bands by Deep Learning
    Dekany, Istvan
    Grebel, Eva K.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2022, 261 (02):
  • [2] Near-infrared Search for Fundamental-mode RR Lyrae Stars toward the Inner Bulge by Deep Learning
    Dekany, Istvan
    Grebel, Eva K.
    [J]. ASTROPHYSICAL JOURNAL, 2020, 898 (01):
  • [3] OGLE-ing the Magellanic System: Photometric Metallicity from Fundamental Mode RR Lyrae Stars
    Skowron, D. M.
    Soszynski, I.
    Udalski, A.
    Szymanski, M. K.
    Pietrukowicz, P.
    Skowron, J.
    Poleski, R.
    Wyrzykowski, L.
    Ulaczyk, K.
    Kozlowski, S.
    Mroz, P.
    Pawlak, M.
    [J]. ACTA ASTRONOMICA, 2016, 66 (03): : 269 - 292
  • [4] Metallicity of Galactic RR Lyrae from Optical and Infrared Light Curves. I. Period-Fourier-Metallicity Relations for Fundamental-mode RR Lyrae
    Mullen, Joseph P.
    Marengo, Massimo
    Martinez-Vazquez, Clara E.
    Neeley, Jillian R.
    Bono, Giuseppe
    Dall'Ora, Massimo
    Chaboyer, Brian
    Thevenin, Frederic
    Braga, Vittorio F.
    Crestani, Juliana
    Fabrizio, Michele
    Fiorentino, Giuliana
    Gilligan, Christina K.
    Monelli, Matteo
    Stetson, Peter B.
    [J]. ASTROPHYSICAL JOURNAL, 2021, 912 (02):
  • [5] Humps and bumps: the effects of shocks on the optical light curves of fundamental-mode RR Lyrae stars
    Prudil, Z.
    Dekany, I.
    Smolec, R.
    Catelan, M.
    Grebel, E. K.
    Kunder, A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2020, 635
  • [6] Evaluating the V-band Photometric Metallicity with Fundamental Mode RR Lyrae in the Kepler Field
    Ngeow, Chow-Choong
    [J]. ASTRONOMICAL JOURNAL, 2022, 164 (02):
  • [7] Blazhko-type fundamental-mode RR Lyrae stars in the globular cluster M3
    Jurcsik, J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 490 (01) : 80 - 95
  • [8] Catalog of fundamental-mode RR Lyrae stars in the galactic bulge from the optical gravitational lensing experiment
    Collinge, Matthew J.
    Sumi, Takahiro
    Fabrycky, Daniel
    [J]. ASTROPHYSICAL JOURNAL, 2006, 651 (01): : 197 - 210
  • [9] Photometric and radial-velocity time series of RR Lyrae stars in M3: analysis of single-mode variables
    Jurcsik, J.
    Smitola, P.
    Hajdu, G.
    Sodor, A.
    Nuspl, J.
    Kolenberg, K.
    Furesz, G.
    Balazs, L. G.
    Pilachowski, C.
    Saha, A.
    Moor, A.
    Kun, E.
    Pal, A.
    Bakos, J.
    Kelemen, J.
    Kovacs, T.
    Kriskovics, L.
    Sarneczky, K.
    Szalai, T.
    Szing, A.
    Vida, K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (02) : 1317 - 1337
  • [10] Photometric and radial-velocity time-series of RR Lyrae stars in M3: analysis of single-mode variables (vol 468, pg 1317, 2017)
    Jurcsik, J.
    Smitola, P.
    Hajdu, G.
    Sodor, A.
    Nuspl, J.
    Kolenberg, K.
    Furesz, G.
    Balazs, L. G.
    Pilachowski, C.
    Saha, A.
    Moor, A.
    Kun, E.
    Pal, A.
    Bakos, J.
    Kelemen, J.
    Kovacs, T.
    Kriskovics, L.
    Sarneczky, K.
    Szalai, T.
    Szing, A.
    Vida, K.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (02) : 2778 - 2778