Little information is available on optimizing the number of nitrogen (N) splits based on nitrate (NO3-N) leaching and maize yield in sandy soils. To address this gap, we evaluated the impact of multiple N splits (2-, 3-, 4-, and 5-N splits) on NO3-N leaching and maize (Zea mays L.) grain yield in irrigated loamy sand soil at a producer site in the Bazile Groundwater Management Area of Northeast Nebraska. Porous suction cup lysimeters were installed at a depth of 120 cm to collect pore water samples from 23 leaching events in 2021, a dry year. Increasing the number of N-splits did not affect the pore-water NO3-N concentration; however, it was 169%, 152%, 150%, and 129% higher in 2-, 3-, 4-, and 5-N split treatments compared to control, that is, without N application. Though the 2-, 3-, 4-, and 5-N splits had 110%, 71%, 120%, and 91% higher area-based NO3-N leaching than the control, less deep percolation and more evapotranspiration in control led to no significant differences in area-based NO3-N leaching among all treatments. All N-splits resulted in higher maize yield, nitrogen use efficiency, plant N uptake, harvest index, and aboveground biomass than control; however, the number of N-splits did not affect these parameters. The inclusion of environmental cost reduced the return to nitrogen by 92-143 $ ha-1 across all N-split treatments but did not significantly affect the differences among the splits. Overall, the results indicate that increasing the number of N-splits does not provide agronomic, economic, and environmental benefits in irrigated maize fields during a dry year. Optimizing the number of N-splits based on nitrate leaching and maize yield in sandy soils remains uncertain. Increasing the number of N-splits did not affect lysimetric pore-water nitrate concentration or nitrate leaching. The number of N-splits did not affect maize yield and other agronomic parameters. Increasing the number of N-splits does not provide agronomic, economic, and environmental benefits in a dry year. Future studies should focus on evaluating and optimizing the number of N-splits under various climate conditions.