共 50 条
"All-in-one" tea polyphenol-modified injectable hyaluronic acid-based hydrogel for diabetic wound healing
被引:4
|作者:
Guan, Lin
[1
]
Wu, Siyu
[2
]
Li, Xiaoli
[1
]
Li, Xingchen
[1
]
Wang, Ze
[1
]
Guo, Wenlai
[2
]
Zvyagin, Andrei, V
[3
]
Qu, Wenrui
[2
]
Yang, Bai
[1
]
Lin, Quan
[1
]
机构:
[1] Jilin Univ, Coll Chem, State Key Lab Supramol Struct & Mat, Changchun 130021, Peoples R China
[2] Second Hosp Jilin Univ, Dept Hand Surg, Changchun 130041, Peoples R China
[3] Sechenov First Moscow State Med Univ, Inst Mol Theranost, 8 Trubetskaya,Room 527-1, Moscow 119991, Russia
关键词:
Chronic diabetic wound;
Conductive hydrogel;
Electrical stimulation;
Injectable;
Antioxidant;
GALLIC-ACID;
ANTIOXIDANT;
D O I:
10.1016/j.ijbiomac.2024.135736
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Refractory diabetic wounds are a devastating and rapidly growing clinical problem, which is associated with high incidence rates, mortality, and recurrence rates. Therapeutic angiogenesis in wound tissues is essential to the healing of diabetic wounds. However, the presence of excessive oxidative stress in diabetic wounds hinders angiogenesis, and conventional anti-oxidative approaches are inefficient to compensate for the systematically impaired angiogenesis. Here, a multifunctional supramolecular hyaluronic acid hydrogel dressing for diabetic wounds is successfully designed and constructed (GHPM). The GHPM hydrogel features outstanding properties, including excellent tissue adhesion, antibacterial ability, conductivity, and antioxidant properties. Based on the dynamic crosslinking structure, the GHPM hydrogel also presents adequate injectable and self-healing capabilities, which play a vital role in covering irregular or deep wounds. Additionally, diabetic wounds treated with GHPM hydrogel showed a significant acceleration of wound closure by preventing wound infection, reducing oxidative stress, and accelerating collagen deposition. More interestingly, the combination of electrical stimulation and GHPM hydrogel can effectively promote angiogenesis and neurogenesis, further accelerating diabetic wound healing in an all-around way. This advanced collaborative strategy opens a new avenue in treating diabetic wounds.
引用
收藏
页数:12
相关论文