Machine learning models with distinct Shapley and interpretation for chemical compound predictions

被引:0
|
作者
Roth, Jannik P. [1 ]
Bajorath, Juergen [1 ,2 ,3 ]
机构
[1] Univ Bonn, Dept Life Sci Informat & Data Sci, B IT, Friedrich Hirzebruch Allee 5-6, D-53115 Bonn, Germany
[2] Univ Bonn, Lamarr Inst Machine Learning & Artificial Intellig, Friedrich Hirzebruch Allee 5-6, D-53115 Bonn, Germany
[3] Univ Bonn, Limes Inst, Program Unit Chem Biol & Med Chem, Friedrich Hirzebruch Allee 5-6, D-53115 Bonn, Germany
来源
CELL REPORTS PHYSICAL SCIENCE | 2024年 / 5卷 / 08期
关键词
EXPLAINABLE AI;
D O I
10.1016/j.xcrp.2024.102110
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Explaining black box predictions of machine learning (ML) models is a topical issue in artificial intelligence (AI) research. For the identification of features determining predictions, the Shapley value formalism originally developed in game theory is widely used in different fields. Typically, Shapley values quantifying feature contributions to predictions need to be approximated in machine learning. We introduce a framework for the calculation of exact Shapley values for 4 kernel functions used in support vector machine (SVM) models and analyze consistently accurate compound activity predictions based on exact Shapley values. Dramatic changes in feature contributions are detected depending on the kernel function, leading to mostly distinct explanations of predictions of the same test compounds. Very different feature contributions yield comparable predictions, which complicate numerical and graphical model explanation and decouple feature attribution and human interpretability.
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Interpretation of Compound Activity Predictions from Complex Machine Learning Models Using Local Approximations and Shapley Values
    Rodriguez-Perez, Raquel
    Bajorath, Juergen
    JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (16) : 8761 - 8777
  • [2] Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
    Rodriguez-Perez, Raquel
    Bajorath, Juergen
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2020, 34 (10) : 1013 - 1026
  • [3] Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions
    Raquel Rodríguez-Pérez
    Jürgen Bajorath
    Journal of Computer-Aided Molecular Design, 2020, 34 : 1013 - 1026
  • [4] Integrating Shapley Values into Machine Learning Techniques for Enhanced Predictions of Hospital Admissions
    Feretzakis, Georgios
    Sakagianni, Aikaterini
    Anastasiou, Athanasios
    Kapogianni, Ioanna
    Bazakidou, Effrosyni
    Koufopoulos, Petros
    Koumpouros, Yiannis
    Koufopoulou, Christina
    Kaldis, Vasileios
    Verykios, Vassilios S.
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [5] Explainable Machine Learning for Property Predictions in Compound Optimization
    Rodriguez-Perez, Raquel
    Bajorath, Jurgen
    JOURNAL OF MEDICINAL CHEMISTRY, 2021, 64 (24) : 17744 - 17752
  • [6] Uncertainty Interpretation of the Machine Learning Survival Model Predictions
    Utkin, Lev, V
    Zaborovsky, Vladimir S.
    Kovalev, Maxim S.
    Konstantinov, Andrei, V
    Politaeva, Natalia A.
    Lukashin, Alexey A.
    IEEE ACCESS, 2021, 9 (09): : 120158 - 120175
  • [7] Perspective Uncovering and tackling fundamental limitations of compound potency predictions using machine learning models
    Janela, Tiago
    Bajorath, Juergen
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (06):
  • [8] Explainable haemoglobin deferral predictions using machine learning models: Interpretation and consequences for the blood supply
    Vinkenoog, Marieke
    van Leeuwen, Matthijs
    Janssen, Mart P.
    VOX SANGUINIS, 2022, 117 (11) : 1262 - 1270
  • [9] Explaining machine learning models in sales predictions
    Bohanec, Marko
    Borstnar, Mirjana Kljajic
    Robnik-Sikonja, Marko
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 71 : 416 - 428
  • [10] Advances in machine learning with chemical language models in molecular property and reaction outcome predictions
    Das, Manajit
    Ghosh, Ankit
    Sunoj, Raghavan B.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2024, 45 (14) : 1160 - 1176