Improved Architecture and Training Strategies of YOLOv7 for Remote Sensing Image Object Detection

被引:0
|
作者
Zhao, Dewei [1 ]
Shao, Faming [1 ]
Liu, Qiang [1 ]
Zhang, Heng [1 ]
Zhang, Zihan [1 ]
Yang, Li [1 ]
机构
[1] Army Engn Univ PLA, Coll Field Engn, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; object detection; improvement; YOLOv7; small object;
D O I
10.3390/rs16173321
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The technology for object detection in remote sensing images finds extensive applications in production and people's lives, and improving the accuracy of image detection is a pressing need. With that goal, this paper proposes a range of improvements, rooted in the widely used YOLOv7 algorithm, after analyzing the requirements and difficulties in the detection of remote sensing images. Specifically, we strategically remove some standard convolution and pooling modules from the bottom of the network, adopting stride-free convolution to minimize the loss of information for small objects in the transmission. Simultaneously, we introduce a new, more efficient attention mechanism module for feature extraction, significantly enhancing the network's semantic extraction capabilities. Furthermore, by adding multiple cross-layer connections in the network, we more effectively utilize the feature information of each layer in the backbone network, thereby enhancing the network's overall feature extraction capability. During the training phase, we introduce an auxiliary network to intensify the training of the underlying network and adopt a new activation function and a more efficient loss function to ensure more effective gradient feedback, thereby elevating the network performance. In the experimental results, our improved network achieves impressive mAP scores of 91.2% and 80.8% on the DIOR and DOTA version 1.0 remote sensing datasets, respectively. These represent notable improvements of 4.5% and 7.0% over the original YOLOv7 network, significantly enhancing the efficiency of detecting small objects in particular.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Improved remote sensing image target detection based on YOLOv7
    XU Shuanglong
    CHEN Zhihong
    ZHANG Haiwei
    XUE Lifang
    SU Huijun
    Optoelectronics Letters, 2024, 20 (04) : 234 - 242
  • [2] Improved remote sensing image target detection based on YOLOv7
    Shuanglong Xu
    Zhihong Chen
    Haiwei Zhang
    Lifang Xue
    Huijun Su
    Optoelectronics Letters, 2024, 20 : 234 - 242
  • [3] Improved remote sensing image target detection based on YOLOv7
    Xu, Shuanglong
    Chen, Zhihong
    Zhang, Haiwei
    Xue, Lifang
    Su, Huijun
    OPTOELECTRONICS LETTERS, 2024, 20 (04) : 234 - 242
  • [4] Improved YOLOv7 for UAV Image Object Detection
    Zou, Zhentao
    Li, Zeping
    Computer Engineering and Applications, 60 (08): : 173 - 181
  • [5] Remote sensing image location based on improved Yolov7 target detection
    Li, Cui
    Wang, Jiao
    PATTERN ANALYSIS AND APPLICATIONS, 2024, 27 (02)
  • [6] Object Detection Based on Improved YOLOv7 for UAV Aerial Image
    Cui, Liqun
    Cao, Huawei
    Computer Engineering and Applications, 60 (20): : 189 - 197
  • [7] Improved YOLOv7 model for underwater sonar image object detection
    Qin, Ken Sinkou
    Liu, Di
    Wang, Fei
    Zhou, Jingchun
    Yang, Jiaxuan
    Zhang, Weishi
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [8] Improved Underwater Object Detection Algorithm of YOLOv7
    Liang, Xiuman
    Li, Ran
    Yu, Haifeng
    Liu, Zhendong
    Computer Engineering and Applications, 2024, 60 (06) : 89 - 99
  • [9] YOLO-FNC: An Improved Method for Small Object Detection in Remote Sensing Images Based on YOLOv7
    Dang, Lanxue
    Liu, Gang
    Hou, Yan-e
    Han, Hongyu
    IAENG International Journal of Computer Science, 2024, 51 (09) : 1281 - 1290
  • [10] An Intelligent Detection Method for Optical Remote Sensing Images Based on Improved YOLOv7
    Dong, Chao
    Jiang, Xiangkui
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 77 (03): : 3015 - 3036