Heterogeneous Graph Neural Network with Personalized and Adaptive Diversity for News Recommendation

被引:0
|
作者
Zhang, Guangping [1 ]
Li, Dongsheng [2 ]
Gu, Hansu [3 ]
Lu, Tun [1 ]
Gu, Ning [1 ]
机构
[1] Fudan Univ, 2005 Songhu Rd, Shanghai 200438, Peoples R China
[2] Microsoft Res Asia, 701 Yunjin Rd, Shanghai 200232, Peoples R China
[3] Amazon Com Inc, Seattle, WA 98109 USA
基金
中国国家自然科学基金;
关键词
News recommendation; graph neural network; heterogeneous information network; recommendation diversity;
D O I
10.1145/3649886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The emergence of online media has facilitated the dissemination of news, but has also introduced the problem of information overload. To address this issue, providing users with accurate and diverse news recommendations has become increasingly important. News possesses rich and heterogeneous content, and the factors that attract users to news reading are varied. Consequently, accurate news recommendation requires modeling of both the heterogeneous content of news and the heterogeneous user-news relationships. Furthermore, users' news consumption is highly dynamic, which is reflected in the differences in topic concentration among different users and in the real-time changes in user interests. To this end, we propose a Heterogeneous Graph Neural Network with Personalized and Adaptive Diversity for News Recommendation (DivHGNN). DivHGNN first represents the heterogeneous content of news and the heterogeneous user-news relationships as an attributed heterogeneous graph. Then, through a heterogeneous node content adapter, it models the heterogeneous node attributes into aligned and fused node representations. With the proposed attributed heterogeneous graph neural network, DivHGNN integrates the heterogeneous relationships to enhance node representation for accurate news recommendations. We also discuss relation pruning, model deployment, and cold-start issues to further improve model efficiency. In terms of diversity, DivHGNN simultaneously models the variance of nodes through variational representation learning for providing personalized diversity. Additionally, a time-continuous exponentially decaying distribution cache is proposed to model the temporal dynamics of user real-time interests for providing adaptive diversity. Extensive experiments on real-world news datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Temporal sensitive heterogeneous graph neural network for news recommendation
    Ji, Zhenyan
    Wu, Mengdan
    Yang, Hong
    Armendariz Inigo, Jose Enrique
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2021, 125 : 324 - 333
  • [2] Interaction Graph Neural Network for News Recommendation
    Qia, Yongye
    Zhao, Pengpeng
    Li, Zhixu
    Fang, Junhua
    Zhao, Lei
    Sheng, Victor S.
    Cui, Zhiming
    [J]. WEB INFORMATION SYSTEMS ENGINEERING - WISE 2019, 2019, 11881 : 599 - 614
  • [3] Adversarial Heterogeneous Graph Neural Network for Robust Recommendation
    Sang, Lei
    Xu, Min
    Qian, Shengsheng
    Wu, Xindong
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2660 - 2671
  • [4] A heterogeneous graph neural network model for list recommendation
    Yang, Wenchuan
    Li, Jichao
    Tan, Suoyi
    Tan, Yuejin
    Lu, Xin
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [5] Personalized recommendation via inductive spatiotemporal graph neural network
    Gong, Jibing
    Zhao, Yi
    Zhao, Jinye
    Zhang, Jin
    Ma, Guixiang
    Zheng, Shaojie
    Du, Shuying
    Tang, Jie
    [J]. PATTERN RECOGNITION, 2024, 145
  • [6] Attention-Based Graph Neural Network for News Recommendation
    Ji, Zhenyan
    Wu, Mengdan
    Liu, Jirui
    Armendariz Inigo, Jose Enrique
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [7] Neural Graph for Personalized Tag Recommendation
    Yu, Yonghong
    Chen, Xuewen
    Zhang, Li
    Gao, Rong
    Gao, Haiyan
    [J]. IEEE INTELLIGENT SYSTEMS, 2022, 37 (01) : 51 - 59
  • [8] Heterogeneous Global Graph Neural Networks for Personalized Session-based Recommendation
    Pang, Yitong
    Wu, Lingfei
    Shen, Qi
    Zhang, Yiming
    Wei, Zhihua
    Xu, Fangli
    Chang, Ethan
    Long, Bo
    Pei, Jian
    [J]. WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 775 - 783
  • [9] Heterogeneous Graph Neural Network for Privacy-Preserving Recommendation
    Wei, Yuecen
    Fu, Xingcheng
    Sun, Qingyun
    Peng, Hao
    Wu, Jia
    Wang, Jinyan
    Li, Xianxian
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2022, : 528 - 537
  • [10] A Session Recommendation Model Based on Heterogeneous Graph Neural Network
    An, Zhiwei
    Tan, Yirui
    Zhang, Jinli
    Jiang, Zongli
    Li, Chen
    [J]. KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 160 - 171