Metal-organic frameworks as sensitisers for potentiometric sensors

被引:0
|
作者
AlQahtani, Hadi Rasam [1 ]
Al-Odayni, Abdel-Basit M. [2 ]
Zeama, Mostafa [3 ]
Shekhah, Osama [3 ]
Eddaoudi, Mohamed [3 ]
Grell, Martin [4 ]
机构
[1] King Saud Univ, Coll Sci, Dept Phys & Astron, Riyadh 11451, Saudi Arabia
[2] King Saud Univ, Coll Dent, Engineer Abdullah Bugshan Res Chair Dent & Oral Re, Riyadh, Saudi Arabia
[3] King Abdullah Univ Sci & Technol KAUST, Adv Membranes & Porous Mat Ctr AMPMC, Div Phys Sci & Engn PSE, Funct Mat Design Discovery Dev Res Grp FMD3, Thuwal 239556900, Saudi Arabia
[4] Llyfrgell Bangor, Ffordd Gwynedd, Bangor LL57 1DT, Wales
关键词
Neonicotinoid; Imidacloprid; EGFET; Agar agar; MOF; Potentiometric Sensors;
D O I
10.1016/j.microc.2024.110547
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
As an example for a metal-organic framework (MOF) sorbent acting as sensitiser in a potentiometric sensor, we introduce the metal-organic framework (MOF) UiO-66-NH2 into a bridged extended-gate field effect transistor (EGFET) design. The sensitised EGFET detects residue of the insecticide imidacloprid with a limit of detection more than 3 orders of magnitude smaller than the EU 'Maximum Residue Limit' (MRL) for imidacloprid. This allows decisions on MRL compliance of water at a much lower experimental footprint than with chromatographic methods. To apply the sensor to food samples, we account for possible interference from legitimate food ingredients. Interference is small or moderate for fruit juices, moderate for 'red' juice (containing anthocyanin dyes), and small for others. Interference is strong for tea, probably from caffeine. We propose a test protocol to make 'accept/reject' decisions with respect to imidacloprid residue even in the presence of small or moderate interference. The present agar-bridged EGFET design enables the wider use of MOF sorbents in potentiometric sensors.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Conductive Metal-Organic Frameworks as Ion-to-Electron Transducers in Potentiometric Sensors
    Mendecki, Lukasz
    Mirica, Katherine A.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (22) : 19248 - 19257
  • [2] Metal-Organic Frameworks for Chemiresistive Sensors
    Koo, Won-Tae
    Jang, Ji-Soo
    Kim, Il-Doo
    [J]. CHEM, 2019, 5 (08): : 1938 - 1963
  • [3] The Applications of Metal-Organic Frameworks in Electrochemical Sensors
    Liu, Lantao
    Zhou, Yanli
    Liu, Shuang
    Xu, Maotian
    [J]. CHEMELECTROCHEM, 2018, 5 (01): : 6 - 19
  • [4] Metal-organic frameworks for electrochemical sensors of neurotransmitters
    Gao, Lu-Lu
    Gao, En-Qing
    [J]. COORDINATION CHEMISTRY REVIEWS, 2021, 434
  • [5] Humidity Sensors Based on Metal-Organic Frameworks
    Wu, Ke
    Fei, Teng
    Zhang, Tong
    [J]. NANOMATERIALS, 2022, 12 (23)
  • [6] Luminescent metal-organic frameworks as explosive sensors
    Banerjee, Debasis
    Hu, Zhichao
    Li, Jing
    [J]. DALTON TRANSACTIONS, 2014, 43 (28) : 10668 - 10685
  • [7] Luminescent sensors based on metal-organic frameworks
    Zhang, Yingmu
    Yuan, Shuai
    Day, Gregory
    Wang, Xuan
    Yang, Xinyu
    Zhou, Hong-Cai
    [J]. COORDINATION CHEMISTRY REVIEWS, 2018, 354 : 28 - 45
  • [8] Metal-organic Frameworks: Emerging Luminescent Sensors
    Sahu, Meman
    Sharma, Vanshika
    Patra, Goutam Kumar
    [J]. CURRENT ANALYTICAL CHEMISTRY, 2024, 20 (02) : 73 - 89
  • [9] The Role of Metal-Organic Frameworks in Electronic Sensors
    Zhang, Lin-Tao
    Zhou, Ye
    Han, Su-Ting
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (28) : 15192 - 15212
  • [10] Engineering of Metal-Organic Frameworks as Ratiometric Sensors
    Patel, Nisthaben
    Shukla, Pooja
    Lama, Prem
    Das, Sourav
    Pal, Tapan K.
    [J]. CRYSTAL GROWTH & DESIGN, 2022, 22 (05) : 3518 - 3564