Development and Testing of a Ruggedized Compact VNIR-SWIR Hyperspectral Imager for Remote Sensing

被引:0
|
作者
Johnson, James B. [1 ]
Roll, Christopher [1 ]
Nugent, Bayleigh [1 ]
Montague, Jenna [1 ]
Lyman, Jeromy [1 ]
Berger, Samuel [1 ]
Brennan, Melissa [1 ]
Lockwood, Ronald B. [1 ]
Chrisp, Michael P. [1 ]
Smeaton, Corrie V. [1 ]
机构
[1] MIT Lincoln Lab, 244 Wood St, Lexington, MA 02421 USA
关键词
Hyperspectral; Spectral Imaging; smallsat; cubesat;
D O I
10.1117/12.3013690
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Chrisp Compact Visible-SWIR Spectrometer (CCVIS) was developed by MIT Lincoln Laboratory as a high performance, low Size-Weight-Power (SWAP) slit-based hyperspectral sensor that provides comparable performance to current fielded units but more than an order smaller in packaging volume. The design takes advantage of a flat, immersed grating and a color-corrected catadioptric layout to provide >25mm slit length operating from 380-2500nm. We show results from our efforts to design and build an environmentally robust variant which undergoing Technology Readiness Level 6 testing for future spaceflight.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Hyperspectral VNIR-SWIR Image Fusion on Cultural Heritage and Remote Sensing Datasets using Image Sharpening Techniques
    Macalintal, Jose N. G. M.
    Hassanzadeh, Amir
    Messinger, David
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXX, 2024, 13031
  • [2] Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing
    Rodriguez-Gomez, Cecilia
    Kereszturi, Gabor
    Jeyakumar, Paramsothy
    Pullanagari, Reddy
    Reeves, Robert
    Rae, Andrew
    Procter, Jonathan N.
    GEOTHERMICS, 2023, 111
  • [3] Global Imager's on-board calibration (VNIR-SWIR)
    Nieke, J
    Asanuma, I
    Tanaka, K
    Tange, Y
    EARTH OBSERVING SYSTEMS VI, 2002, 4483 : 231 - 241
  • [4] Identifying vehicles with VNIR-SWIR hyperspectral imagery: Sources of distinguishability and confusion
    Adler-Golden, Steve
    Sundberg, Robert
    IMAGING SPECTROMETRY XXI, 2016, 9976
  • [5] Carbon Mapper Phase 1: Two Upcoming VNIR-SWIR Hyperspectral Imaging Satellites
    Keremedjiev, Mark S.
    Haag, Justin
    Shivers, Sarah
    Guido, Jeff
    Roth, Keely
    Nallapu, Ravi Teja
    Dockstader, Shiloh
    McGill, Lisa
    Giuliano, Paul
    Duren, Riley
    Asner, Gregory P.
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGING XXVIII, 2022, 12094
  • [6] A next generation VNIR-SWIR hyperspectral camera system: HySpex ODIN-1024
    Blaaberg, Soren
    Loke, Trond
    Baarstad, Ivar
    Fridman, Andrei
    Koirala, Pesal
    ELECTRO-OPTICAL AND INFRARED SYSTEMS: TECHNOLOGY AND APPLICATIONS XI, 2014, 9249
  • [7] Improved Learning-Based Approach for Atmospheric Compensation of VNIR-SWIR Hyperspectral Data
    Acito, Nicola
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [8] Validation of the Quick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi-and hyperspectral imagery
    Bernstein, LS
    Adler-Golden, SM
    Sundberg, RL
    Levine, RY
    Perkins, TC
    Berk, A
    Ratkowski, AJ
    Felde, G
    Hoke, ML
    Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, 2005, 5806 : 668 - 678
  • [9] Comparison of lithological mapping results from airborne hyperspectral VNIR-SWIR, LWIR and combined data
    Feng, Jilu
    Rogge, Derek
    Rivard, Benoit
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 64 : 340 - 353
  • [10] Modelling of the optical signature of oil slicks at sea for the analysis of multi- and hyperspectral VNIR-SWIR images
    Caillault, Karine
    Roupioz, Laure
    Viallefont-Robinet, Francoise
    OPTICS EXPRESS, 2021, 29 (12) : 18224 - 18242