Enhanced electrochemical cyclability of composite sodium metal anode with inorganic-rich solid electrolyte interphase

被引:1
|
作者
Cen, Changqun [1 ]
Yang, Xiaoxue [1 ]
Wang, Xiancheng [2 ]
Fu, Lin [1 ,6 ]
Li, Yuanjian [2 ]
Lu, Ke [3 ,4 ]
He, Liqing [5 ]
Sun, Yongming [2 ]
机构
[1] Guizhou Univ, Prov Guizhou Key Lab Green Chem & Clean Energy Tec, Sch Chem & Chem Engn, Guiyang 550025, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] Anhui Univ, Inst Phys Sci, Sch Mat Sci & Engn, Key Lab Struct & Funct Regulat Hybrid Mat,Minist E, Hefei 230601, Peoples R China
[4] Anhui Univ, Inst Informat Technol, Sch Mat Sci & Engn, Key Lab Struct & Funct Regulat Hybrid Mat,Minist E, Hefei 230601, Peoples R China
[5] Hefei Gen Machinery Res Inst Co Ltd, Hefei 230031, Peoples R China
[6] South China Normal Univ, Int Acad Optoelect Zhaoqing, Zhaoqing 526060, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium metal anode; Solid electrolyte interphase; Fast ion diffusion; Na/Na 3 P composite foil; Electrochemical performance; BATTERIES; FILM;
D O I
10.1016/j.cej.2024.154898
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The practical application of sodium (Na) metal anode in rechargeable batteries is impeded by inferior electrochemical properties and safety hazards arising from uneven Na plating/stripping behaviors. The Na-ion diffusion within the solid electrolyte interphase (SEI) plays a pivotal role in influencing these behaviors and the electrochemical performance of the Na metal anode. In this study, we leveraged the spontaneous reaction between red phosphorus (P) and metallic Na to fabricate a Na/Na3P (NNP) composite foil using a straightforward folding and mechanical rolling method at room temperature. The in-situ formed Na3P phase fosters the formation of an inorganic-rich SEI layer with high ionic conductivity, effectively enhancing the Na-ion diffusion kinetics and curbing the formation of Na dendrites. Moreover, the Na3P present in the NNP composite can continually replenish the functional component and promptly repair the fracture of the SEI layer, thereby ensuring the stability of its structure and properties. Consequently, the NNP composite electrode significantly extends the Na plating/stripping cyclic lifespan compared to a bare Na anode. As a demonstration, the Na3V2(PO4)3||NNP full cell exhibits stable performance over 400 cycles with 96.7 % capacity retention at 5C. This work paves the way for designing stable SEI layers with fast ion diffusion capability for alkali metal anodes, and the findings are anticipated to propel the development of alkali metal batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Tailoring Electrolyte Solvation Chemistry toward an Inorganic-Rich Solid-Electrolyte Interphase at a Li Metal Anode
    Zheng, Xueying
    Huang, Liqiang
    Luo, Wei
    Wang, Haotian
    Dai, Yiming
    Liu, Xuyang
    Wang, Zhongqiang
    Zheng, Honghe
    Huang, Yunhui
    ACS ENERGY LETTERS, 2021, 6 (06) : 2054 - 2063
  • [2] Inorganic-rich solid electrolyte interphase and oriented (002) crystal plane extension for reversible zinc metal anode
    Du, Biyao
    Chen, Jingzhu
    Xu, Yang
    Lv, Zhuoran
    Ying, Peng
    Dong, Wujie
    Yan, Luke
    Bi, Hui
    Huang, Fuqiang
    CHEMICAL ENGINEERING JOURNAL, 2025, 505
  • [3] Inorganic Filler Enhanced Formation of Stable Inorganic-Rich Solid Electrolyte Interphase for High Performance Lithium Metal Batteries
    Guo, Chi
    Du, Kang
    Tao, Runming
    Guo, Yaqing
    Yao, Shuhao
    Wang, Jianxing
    Wang, Deyu
    Liang, Jiyuan
    Lu, Shih-Yuan
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (29)
  • [4] Constructing an inorganic-rich solid electrolyte interphase by adjusting electrolyte additives for stable Li metal anodes
    Li, Minghui
    Chen, Cai
    Luo, Hongze
    Xu, Qingshuai
    Yan, Keyou
    Qiu, Yongcai
    Zhou, Guangmin
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (17) : 10072 - 10080
  • [5] An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes
    Liu, Sufu
    Ji, Xiao
    Piao, Nan
    Chen, Ji
    Eidson, Nico
    Xu, Jijian
    Wang, Pengfei
    Chen, Long
    Zhang, Jiaxun
    Deng, Tao
    Hou, Singyuk
    Jin, Ting
    Wan, Hongli
    Li, Jingru
    Tu, Jiangping
    Wang, Chunsheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (07) : 3661 - 3671
  • [6] Prolonging the cycling lifetime of lithium metal batteries with a monolithic and inorganic-rich solid electrolyte interphase
    Yang, Jinlin
    Li, Menghao
    Sun, Zejun
    Lian, Xu
    Wang, Yanan
    Niu, Yuxiang
    Jiang, Chonglai
    Luo, Yani
    Liu, Yuan
    Tian, Zhangliu
    Long, Yu
    Zhang, Kun
    Yu, Pengcheng
    Zhang, Jia
    Wang, Zeheng
    Wu, Gang
    Gu, Meng
    Chen, Wei
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3837 - 3846
  • [7] Understanding the Inorganic-Rich Feature of Anion-Derived Solid Electrolyte Interphase
    Li, Yan
    Bai, Fengwei
    Li, Chengzong
    Wang, Yan
    Li, Tao
    ADVANCED ENERGY MATERIALS, 2024, 14 (21)
  • [8] Dissolution of the Solid Electrolyte Interphase and Its Effects on Lithium Metal Anode Cyclability
    Sayavong, Philaphon
    Zhang, Wenbo
    Oyakhire, Solomon T.
    Boyle, David T.
    Chen, Yuelang
    Kim, Sang Cheol
    Vila, Rafael A.
    Holmes, Sarah E.
    Kim, Mun Sek
    Bent, Stacey F.
    Bao, Zhenan
    Cui, Yi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (22) : 12342 - 12350
  • [9] In Situ Electrochemical Interfacial Manipulation Enabling Lithiophilic Li Metal Anode with Inorganic-Rich Solid Electrolyte Interphases for Stable Li Metal Batteries
    Kim, Subin
    Cho, Ki-Yeop
    Kwon, Junhwa
    Sim, Kiyeon
    Eom, Kwangsup
    Fuller, Thomas F.
    SMALL STRUCTURES, 2024, 5 (11):
  • [10] Decline Mechanism of Graphite/Lithium Metal Hybrid Anode and Its Stabilization by Inorganic-Rich Solid Electrolyte Interface
    Wu, Zeyu
    Wang, Zhenhua
    Zhang, Jing
    Bai, Zhe
    Zhao, Lina
    Li, Ruilong
    Yang, Zhanfeng
    Bai, Yu
    Sun, Kening
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (29) : 34922 - 34930