Direct Precursor Route for the Fabrication of LLZO Composite Cathodes for Solid-State Batteries

被引:0
|
作者
Kiyek, Vivien [1 ,2 ]
Schwab, Christian [1 ]
Scheld, Walter Sebastian [1 ]
Roitzheim, Christoph [1 ]
Lindner, Adrian [3 ]
Menesklou, Wolfgang [3 ]
Finsterbusch, Martin [1 ,4 ]
Fattakhova-Rohlfing, Dina [1 ,4 ,5 ,6 ]
Guillon, Olivier [1 ,2 ,4 ,7 ]
机构
[1] Forschungszentrum Julich, Inst Energy Mat & Devices Mat Synth & Proc IMD 2, D-52425 Julich, Germany
[2] Rhein Westfal TH Aachen, Inst Mineral Engn, D-52064 Aachen, Germany
[3] Karlsruhe Inst Technol KIT, Inst Appl Mat Electrochem Technol IAM ET, D-76131 Karlsruhe, Germany
[4] Helmholtz Inst Munster Ion Energy Storage IEK 12, D-48149 Munster, Germany
[5] Univ Duisburg Essen, Fac Engn, D-47057 Duisburg, Germany
[6] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen, D-47057 Duisburg, Germany
[7] Julich Aachen Res Alliance JARA ENERGY, D-52425 Julich, Germany
关键词
all-solid-state batteries; ceramic composites; in situ synthesis; LLZO; LITHIUM-ION BATTERY; SUBSTITUTED LI7LA3ZR2O12; INTERFACE MODIFICATION; LICOO2; ELECTROLYTE; RAMAN; PERFORMANCE; CONDUCTION;
D O I
10.1002/advs.202404682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state batteries based on Li7La3Zr2O12 (LLZO) garnet electrolyte are a robust and safe alternative to conventional lithium-ion batteries. However, the large-scale implementation of ceramic composite cathodes is still challenging due to a complex multistep manufacturing process. A new one-step route for the direct synthesis of LLZO during the manufacturing of LLZO/LiCoO2 (LCO) composite cathodes based on cheap precursors and utilizing the industrially established tape casting process is presented. It is shown that Al, Ta:LLZO can be formed directly in the presence of LCO from metal oxide precursors (LiOH, La2O3, ZrO2, Al2O3, and Ta2O5) by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. In addition, performance-optimized gradient microstructures can be produced by sequential casting of slurries with different compositions, resulting in dense and flat phase-pure cathodes without unwanted ion interdiffusion or secondary phase formation. Freestanding cathodes with a thickness of 85 mu m, a relative density of 95%, and an industrial relevant LCO loading of 15 mg show an initial capacity of 82 mAh g-1 (63% of the theoretical capacity of LCO) in a solid-state cell with Li metal anodes, which is comparable to conventional LCO/LLZO cathodes and can be further improved in the future. Free-standing solid-state cathodes of Li7La3Zr2O12 (LLZO) solid electrolyte and LiCoO2 (LCO) are formed in a one-step process based on cheap precursors and utilizing the industrially established tape casting process. LLZO can be formed directly in the presence of LCO from metal oxide precursors by heating to 1050 degrees C, eliminating the time- and energy-consuming synthesis of preformed LLZO powders. image
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Screen-Printed Composite LiFePO4-LLZO Cathodes Towards Solid-State Li-ion Batteries
    Molaiyan, Palanivel
    Valikangas, Juho
    Sliz, Rafal
    Ramteke, D. D.
    Hu, Tao
    Paolella, Andrea
    Fabritius, Tapio
    Lassi, Ulla
    CHEMELECTROCHEM, 2024, 11 (09)
  • [2] Rational Design of LLZO/Polymer Solid Electrolytes for Solid-State Batteries
    Liu, Xueping
    Xiao, Zhe
    Peng, Huarong
    Jiang, Dongting
    Xie, Honggui
    Sun, Yiling
    Zhong, Shengkui
    Qian, Zhengfang
    Wang, Renheng
    CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
  • [3] Composite Cathodes for Solid-State Lithium Batteries: "Catholytes" the Underrated Giants
    Al-Salih, Hilal
    Houache, Mohamed Seif Eddine
    Baranova, Elena A.
    Abu-Lebdeh, Yaser
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2022, 3 (08):
  • [4] Effect of LLZO on the in situ polymerization of acrylate solid-state electrolytes on cathodes
    Xu, Kaiyun
    Zhou, Xiaoyu
    Ge, Menghan
    Qiu, Ziwen
    Mao, Ya
    Wang, Hefeng
    Qin, Yinping
    Zhou, Jingjing
    Liu, Yang
    Guo, Bingkun
    RSC ADVANCES, 2023, 13 (12) : 8130 - 8135
  • [5] Li-Garnet Solid-State Batteries with LLZO Scaffolds
    V. Kravchyk, Kostiantyn
    Zhang, Huanyu
    Okur, Faruk
    V. Kovalenko, Maksym
    ACCOUNTS OF MATERIALS RESEARCH, 2022, 3 (04): : 411 - 415
  • [6] STRUCTURE AND COMPOSITION OF COMPOSITE CATHODES USED IN SOLID-STATE LITHIUM POLYMERIC BATTERIES
    PATRICK, AJ
    LINFORD, RG
    HOOPER, A
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) : C146 - C146
  • [7] Safe solid-state PEO/TPU/LLZO nano network polymer composite gel electrolyte for solid state lithium batteries
    Xu, Haoshan
    Huang, Shuhong
    Qian, Jiaqi
    Liu, Siming
    Li, Ling
    Zhao, Xiaohui
    Zhang, Wenming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2022, 653
  • [8] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Kulkarni, Uddhav
    Cho, Won-Jang
    Cho, Seok-Kyu
    Hong, Jeong-Jin
    Shejale, Kiran P.
    Yi, Gi-Ra
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2024, 41 (02) : 385 - 402
  • [9] Solid Polymer Electrolytes-Based Composite Cathodes for Advanced Solid-State Lithium Batteries
    Uddhav Kulkarni
    Won-Jang Cho
    Seok-Kyu Cho
    Jeong-Jin Hong
    Kiran P. Shejale
    Gi-Ra Yi
    Korean Journal of Chemical Engineering, 2024, 41 : 385 - 402
  • [10] Accelerating the Development of LLZO in Solid-State Batteries Toward Commercialization: A Comprehensive Review
    Wang, Yang
    Chen, Zhen
    Jiang, Kai
    Shen, Zexiang
    Passerini, Stefano
    Chen, Minghua
    SMALL, 2024, 20 (35)