Machine learning and natural language processing to assess the emotional impact of influencers'mental health content on Instagram

被引:0
|
作者
Merayo, Noemi [1 ]
Ayuso-Lanchares, Alba [2 ]
Gonzalez-Sanguino, Clara [3 ]
机构
[1] Univ Valladolid, High Sch Telecommun Engn, Signal Theory Commun & Telematic Engn Dept, Valladolid, Valladolid, Spain
[2] Univ Valladolid, Fac Med, Dept Pedag, Valladolid, Valladolid, Spain
[3] Univ Valladolid, Educ & Social Work Fac, Dept Psychol, Valladolid, Valladolid, Spain
关键词
Mental health; Sentiment analysis; Emotions; Machine learning; Social networks; Instagram; SENTIMENT ANALYSIS; MENTAL-ILLNESS; SOCIAL MEDIA; LEXICON; STIGMA;
D O I
10.7717/peerj-cs.2251
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background: This study aims to examine, through artificial intelligence, specifically machine learning, the emotional impact generated by disclosures about mental health on social media. In contrast to previous research, which primarily focused on identifying psychopathologies, our study investigates the emotional response to mental health-related content on Instagram, particularly content created by influencers/celebrities. This platform, especially favored by the youth, is the stage where these influencers exert significant social impact, and where their analysis holds strong relevance. Analyzing mental health with machine learning techniques on Instagram is unprecedented, as all existing research has primarily focused on Twitter. Methods: This research involves creating a new corpus labelled with responses to mental health posts made by influencers/celebrities on Instagram, categorized by emotions such as love/admiration, anger/contempt/mockery, gratitude, identification/empathy, and sadness. The study is complemented by modelling a set of machine learning algorithms to efficiently detect the emotions arising when faced with these mental health disclosures on Instagram, using the previous corpus. Results: Results have shown that machine learning algorithms can effectively detect such emotional responses. Traditional techniques, such as Random Forest, showed decent performance with low computational loads (around 50%), while deep learning and Bidirectional Encoder Representation from Transformers (BERT) algorithms achieved very good results. In particular, the BERT models reached accuracy levels between 86-90%, and the deep learning model achieved 72% accuracy. These results are satisfactory, considering that predicting emotions, especially in social networks, is challenging due to factors such as the subjectivity of emotion interpretation, the variability of emotions between individuals, and the interpretation of emotions in different cultures and communities. Discussion: This cross-cutting research between mental health and artificial intelligence allows us to understand the emotional impact generated by mental health content on social networks, especially content generated by influential celebrities among young people. The application of machine learning allows us to understand the emotional reactions of society to messages related to mental health, which is highly innovative and socially relevant given the importance of the phenomenon in societies. In fact, the proposed algorithms' high accuracy (86-90%) in social contexts like mental health, where detecting negative emotions is crucial, presents a promising research avenue. Achieving such levels of accuracy is highly valuable due to the significant fi cant implications of false positives or false negatives in this social context.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Machine Learning and Natural Language Processing in Mental Health: Systematic Review
    Le Glaz, Aziliz
    Haralambous, Yannis
    Kim-Dufor, Deok-Hee
    Lenca, Philippe
    Billot, Romain
    Ryan, Taylor C.
    Marsh, Jonathan
    DeVylder, Jordan
    Walter, Michel
    Berrouiguet, Sofian
    Lemey, Christophe
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (05)
  • [2] Machine Learning, Natural Language Processing, and the Electronic Health Record: Innovations in Mental Health Services Research
    Edgcomb, Juliet Beni
    Zima, Bonnie
    PSYCHIATRIC SERVICES, 2019, 70 (04) : 346 - 349
  • [3] Using Natural Language Processing and Machine Learning to Replace Human Content Coders
    Wang, Yilei
    Tian, Jingyuan
    Yazar, Yagizhan
    Ones, Deniz S.
    Landers, Richard N.
    PSYCHOLOGICAL METHODS, 2022,
  • [4] Eeriness Unveiled: A Natural Language Processing Investigation of Co-Presented Human and Virtual Influencers on Instagram
    Kim, Wonkyung
    Quan, Wei
    CURRENT PSYCHOLOGY, 2024, 43 (25) : 21966 - 21980
  • [6] Knowledgeable Machine Learning for Natural Language Processing
    Han, Xu
    Zhang, Zhengyan
    Liu, Zhiyuan
    COMMUNICATIONS OF THE ACM, 2021, 64 (11) : 50 - 51
  • [7] Machine learning in statistical natural language processing
    Mochihashi, Daichi
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2015, 69 (02): : 131 - 135
  • [8] Online Review Content Moderation Using Natural Language Processing and Machine Learning Methods
    Doan, Alicia
    England, Nathan
    Vitello, Travis
    2021 SYSTEMS AND INFORMATION ENGINEERING DESIGN SYMPOSIUM (IEEE SIEDS 2021), 2021, : 233 - 238
  • [9] Artificial learning companionusing machine learning and natural language processing
    R. Pugalenthi
    A Prabhu Chakkaravarthy
    J Ramya
    Samyuktha Babu
    R. Rasika Krishnan
    International Journal of Speech Technology, 2021, 24 : 553 - 560
  • [10] Artificial learning companionusing machine learning and natural language processing
    Pugalenthi, R.
    Prabhu Chakkaravarthy, A.
    Ramya, J.
    Babu, Samyuktha
    Rasika Krishnan, R.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2021, 24 (03) : 553 - 560