Deep reinforcement learning based task offloading and resource allocation strategy across multiple edge servers

被引:0
|
作者
Shi, Bing [1 ,2 ]
Pan, Yuting [1 ]
Huang, Lianzhen [1 ]
机构
[1] Wuhan Univ Technol, Sch Comp Sci & Artificial Intelligence, Wuhan 430000, Peoples R China
[2] Wuhan Univ Technol, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
关键词
Multiple edge servers; Task offloading; Resource allocation; Deep reinforcement learning; INTERNET;
D O I
10.1007/s11761-024-00419-6
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In the mobile edge computing environment, multiple edge servers are often deployed in task-dense areas, however, the service coverage of these edge servers may overlap with each other. In such scenarios, users within the overlapping areas need to determine which server is chosen to offload the task. However, unreasonable decision of task offloading may result in imbalanced loads, thereby affecting the number of served users and the latency and energy consumption of user task offloading. Furthermore, the complexity of task offloading and resource allocation is further heightened by the dynamic arrival of user tasks. Therefore, it is crucial to design an effective task offloading and resource allocation strategy in an environment with multiple edge servers. In this paper, we propose a task offloading and resource allocation strategy aimed at meeting task latency requirements while maximizing the number of served users and minimizing the average energy consumption of all completed tasks. To timely obtain information about user tasks and the status of edge servers, we adopt a central controller to manage multiple edge servers. Then, we model the problem as a parameterized action Markov decision process and utilize the parameterized deep Q-network algorithm, a deep reinforcement learning algorithm, to solve it. Additionally, we conducted experiments to evaluate the performance of our proposed strategy against five benchmark strategies. The results demonstrate the superiority of our strategy in terms of the number of served users and the average energy consumption per task while meeting task latency constraints.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Task Offloading and Resource Allocation Strategy Based on Deep Learning for Mobile Edge Computing
    Yu, Zijia
    Xu, Xu
    Zhou, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [2] Task Offloading and Resource Allocation for Mobile Edge Computing by Deep Reinforcement Learning Based on SARSA
    Alfakih, Taha
    Hassan, Mohammad Mehedi
    Gumaei, Abdu
    Savaglio, Claudio
    Fortino, Giancarlo
    IEEE ACCESS, 2020, 8 : 54074 - 54084
  • [3] Task Offloading and Resource Allocation Strategies Among Multiple Edge Servers
    Shi, Bing
    Wu, Yiming
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 14647 - 14656
  • [4] Computation offloading and resource allocation strategy based on deep reinforcement learning
    Zeng F.
    Zhang Z.
    Chen Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (07): : 124 - 135
  • [5] A Task Offloading and Resource Allocation Strategy Based on Multi-Agent Reinforcement Learning in Mobile Edge Computing
    Jiang, Guiwen
    Huang, Rongxi
    Bao, Zhiming
    Wang, Gaocai
    FUTURE INTERNET, 2024, 16 (09)
  • [6] Multi-user Edge Computing Task offloading Scheduling and Resource Allocation Based on Deep Reinforcement Learning
    Kuang Z.-F.
    Chen Q.-L.
    Li L.-F.
    Deng X.-H.
    Chen Z.-G.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (04): : 812 - 824
  • [7] Offloading and Resource Allocation With General Task Graph in Mobile Edge Computing: A Deep Reinforcement Learning Approach
    Yan, Jia
    Bi, Suzhi
    Zhang, Ying-Jun Angela
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (08) : 5404 - 5419
  • [8] Edge Collaborative Task Scheduling and Resource Allocation Based on Deep Reinforcement Learning
    Chen, Tianjian
    Lyu, Zengwei
    Yuan, Xiaohui
    Wei, Zhenchun
    Shi, Lei
    Fan, Yuqi
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 598 - 606
  • [9] Federated Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Smart Cities in a Mobile Edge Network
    Chen, Xing
    Liu, Guizhong
    SENSORS, 2022, 22 (13)
  • [10] Deep Reinforcement Learning for Offloading and Resource Allocation in Vehicle Edge Computing and Networks
    Liu, Yi
    Yu, Huimin
    Xie, Shengli
    Zhang, Yan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (11) : 11158 - 11168