Towards an Explainable AI Platform to Study Interruptions in Cancer Radiation Therapy

被引:0
|
作者
Shaban-Nejad, Arash [1 ]
Ammar, Nariman [2 ]
Kumsa, Fekede [1 ]
Hashtarkhani, Soheil [1 ]
White, Brianna [1 ]
Chinthala, Lokesh K. [1 ]
Owens, Chase A. [3 ]
Hayes, Neil [4 ]
Schwartz, David L. [5 ,6 ]
机构
[1] Univ Tennessee, Dept Pediat, Coll Med,Hlth Sci Ctr, Oak Ridge Natl Lab UTHSC ORNL,Ctr Biomed Informat, Memphis, TN USA
[2] Illinois State Univ, Sch Informat Technol, Coll Appl Sci & Technol, Normal, IL USA
[3] Univ Tennessee, Hlth Sci Ctr, Memphis, TN USA
[4] Univ Tennessee, Div Med Hematol, Dept Med, Coll Med,Hlth Sci Ctr, Memphis, TN USA
[5] Univ Tennessee, Coll Med, Dept Radiat Oncol, Hlth Sci Ctr, Memphis, TN USA
[6] Univ Tennessee, Coll Med, Dept Prevent Med, Hlth Sci Ctr, Memphis, TN USA
来源
关键词
Cancer informatics; public health informatics; explainable AI; causal inference; social determinants of health; disparities;
D O I
10.3233/SHTI231264
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Radiation therapy interruptions drive cancer treatment failures; they represent an untapped opportunity for improving outcomes and narrowing treatment disparities. This research reports on the early development of the X-CART platform, which uses explainable AI to model cancer treatment outcome metrics based on high-dimensional associations with our local social determinants of health dataset to identify and explain causal pathways linking social disadvantage with increased radiation therapy interruptions.
引用
收藏
页码:1501 / 1502
页数:2
相关论文
共 50 条
  • [1] Towards Trustable Explainable AI
    Ignatiev, Alexey
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 5154 - 5158
  • [2] Towards Autonomous Developmental Artificial Intelligence: Case Study for Explainable AI
    Starkey, Andrew
    Ezenkwu, Chinedu Pascal
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 94 - 105
  • [3] AI assurance: towards trustworthy, explainable, safe, and ethical AI
    Wang, Jialei
    Fu, Li
    AI & SOCIETY, 2024, 39 (06) : 3065 - 3066
  • [4] Towards Temporally Uncertain Explainable AI Planning
    Murray, Andrew
    Krarup, Benjamin
    Cashmore, Michael
    DISTRIBUTED COMPUTING AND INTELLIGENT TECHNOLOGY, ICDCIT 2022, 2022, 13145 : 45 - 59
  • [5] Towards Relatable Explainable AI with the Perceptual Process
    Zhang, Wencan
    Lim, Brian Y.
    PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
  • [6] Effectiveness of Cepharanthin in decreasing interruptions during radiation therapy for oral cancer
    Uchiyama Y.
    Murakami S.
    Kakimoto N.
    Nakatani A.
    Furukawa S.
    Oral Radiology, 2005, 21 (1) : 41 - 44
  • [7] Encoding Semantic Attributes - Towards Explainable AI in Industry
    Schneider, Sarah
    Antensteiner, Doris
    Soukup, Daniel
    Scheutz, Matthias
    PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, 2023, : 518 - 527
  • [8] XAI Handbook: Towards a Unified Framework for Explainable AI
    Palacio, Sebastian
    Lucieri, Adriano
    Munir, Mohsin
    Ahmed, Sheraz
    Hees, Jorn
    Dengel, Andreas
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3759 - 3768
  • [9] Towards Explainable AI for Channel Estimation in Wireless Communications
    Gizzini, Abdul Karim
    Medjahdi, Yahia
    Ghandour, Ali J.
    Clavier, Laurent
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 7389 - 7394
  • [10] An Explainable AI approach towards Epileptic Seizure Detection
    Chapatwala, Neeta
    Paunwala, Chirag N.
    Dalal, Poojan
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,