Left-symmetric algebra structures on the finite-dimensional Witt algebra

被引:0
|
作者
Chen, Hongjia [1 ]
Wang, Qi [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Harbin Engn Univ, Sch Math Sci, Harbin 150001, Heilongjiang, Peoples R China
关键词
Left-symmetric algebra; Witt algebra; Irreducible representation;
D O I
10.1016/j.jalgebra.2024.07.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish compatible left-symmetric algebra structures on the finite-dimensional Witt algebra over an algebraically closed field of characteristic p > 3, satisfying specific Z or Zp-graded conditions. Our primary method involves the representation theory of the Witt algebra in Zp-graded case. Additionally, as a consequential result, we partially answer a question raised by Shen. (c) 2024 Elsevier Inc. All rights are reserved, including those technologies.
引用
收藏
页码:373 / 397
页数:25
相关论文
共 50 条
  • [1] A note on the left-symmetric algebraic structures of the Witt algebra
    Liu, Xuewen
    Guo, Xiangqian
    Bian, Dongping
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1793 - 1804
  • [2] A class of non-graded left-symmetric algebraic structures on the Witt algebra
    Tang, Xiaomin
    Bai, Chengming
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (07) : 922 - 935
  • [3] Left-Symmetric Algebra Structures on the Planar Galilean Conformal Algebra
    Chi, Lili
    Sun, Jiancai
    ALGEBRA COLLOQUIUM, 2019, 26 (02) : 285 - 308
  • [4] Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra
    CHEN HongJia
    LI JunBo
    Science China Mathematics, 2014, 57 (03) : 469 - 476
  • [5] Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra
    Chen HongJia
    Li JunBo
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (03) : 469 - 476
  • [6] Left-symmetric algebra structures on the twisted Heisenberg-Virasoro algebra
    HongJia Chen
    JunBo Li
    Science China Mathematics, 2014, 57 : 469 - 476
  • [7] On radicals of a left-symmetric algebra
    Chang, KS
    Kim, H
    Myung, HC
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (07) : 3161 - 3175
  • [8] Left-symmetric algebra structures on contact Lie algebras
    Mendez-Mendez, F. O.
    Salgado, G.
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (07) : 2914 - 2929
  • [9] The five-dimensional complete left-symmetric algebra structures compatible with an Abelian Lie algebra structure
    Dekimpe, K
    Igodt, P
    Ongenae, V
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1997, 263 : 349 - 375
  • [10] The five-dimensional complete left-symmetric algebra structures compatible with an abelian Lie algebra structure
    Dekimpe, Karel
    Igodt, Paul
    Ongenae, Veerle
    Linear Algebra and Its Applications, 1997, 263 (1-3): : 349 - 375