Machine learning and physics-driven modelling and simulation of multiphase systems

被引:0
|
作者
Basha, Nausheen [1 ]
Arcucci, Rossella [2 ,5 ]
Angeli, Panagiota [3 ]
Anastasiou, Charitos [3 ]
Abadie, Thomas [4 ]
Casas, Cesar Quilodran [5 ]
Chen, Jianhua [1 ,6 ]
Cheng, Sibo [5 ,12 ,13 ]
Chagot, Loic [3 ]
Galvanin, Federico [3 ]
Heaney, Claire E. [2 ,7 ]
Hossein, Fria [3 ]
Hu, Jinwei [2 ]
Kovalchuk, Nina [4 ]
Kalli, Maria [3 ]
Kahouadji, Lyes [1 ]
Kerhouant, Morgan [1 ]
Lavino, Alessio [1 ]
Liang, Fuyue [1 ]
Nathanael, Konstantia [4 ]
Magri, Luca [8 ,9 ]
Lettieri, Paola [3 ]
Materazzi, Massimiliano [3 ]
Erigo, Matteo [3 ]
Pico, Paula [1 ]
Pain, Christopher C. [2 ,5 ,7 ]
Shams, Mosayeb [1 ]
Simmons, Mark [4 ]
Traverso, Tullio [8 ,9 ]
Valdes, Juan Pablo [1 ]
Wolffs, Zef [10 ,11 ]
Zhu, Kewei [3 ]
Zhuang, Yilin [1 ]
Matar, Omar K. [1 ]
机构
[1] Imperial Coll London, Dept Chem Engn, London, England
[2] Imperial Coll London, Dept Earth Sci & Engn, London, England
[3] UCL, Dept Chem Engn, London, England
[4] Univ Birmingham, Sch Chem Engn, Birmingham, England
[5] Imperial Coll London, Data Sci Inst, Dept Comp, London, England
[6] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing, Peoples R China
[7] Imperial Coll London, Ctr AI Phys Modelling, Imperial X, White City Campus, London, England
[8] Alan Turing Inst, British Lib, 96 Euston Rd, London NW1 2DB, England
[9] Imperial Coll London, Dept Aeronaut, London, England
[10] Univ Amsterdam, Inst Phys, Sci Pk 904, Amsterdam, Netherlands
[11] Nikhef, Sci Pk 105, Amsterdam, Netherlands
[12] CEREA, Ecole Ponts, Ile De France, France
[13] EDF R&D, Ile De France, France
关键词
Machine Learning; Numerical simulations; Multiphase; Multi-fidelity; Microfluidics; Hybrid methods; ACOUSTIC-EMISSION; UNCERTAINTY; FLOW; OPTIMIZATION; BUBBLES; MASS;
D O I
10.1016/j.ijmultiphaseflow.2024.104936
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We highlight the work of a multi-university collaborative programme, PREMIERE (PREdictive Modelling with QuantIfication of UncERtainty for MultiphasE Systems), which is at the intersection of multi-physics and machine learning, aiming to enhance predictive capabilities in complex multiphase flow systems across diverse length and time scales. Our contributions encompass a variety of approaches, including the Design of Experiments for nanoparticle synthesis optimisation, Generalised Latent Assimilation models for drop coalescence prediction, Bayesian regularised artificial neural networks, eXtreme Gradient Boosting for microdroplet formation prediction, and a sub-sampling based adversarial neural network for predicting slug flow behaviour in twophase pipe flows. Additionally, we introduce a generalised latent assimilation technique, Long Short-Term Memory networks for sequence forecasting mixing performance in stirred and static mixers, active learning via Bayesian optimisation to recover coalescence model parameters for high current density electrolysers, Gaussian process regression for drop size distribution predictions for sprays, and acoustic emission signal inversion using gradient boosting machines to characterise particle size distribution in fluidised beds. We also offer perspectives on the development of a shape optimisation framework that leverages the use of a multifidelity multiphase emulator. The results presented have applications in chemical synthesis, microfluidics, product manufacturing, and green hydrogen generation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Physics-Driven Machine Learning for Computational Imaging
    Wen, Bihan
    Ravishankar, Saiprasad
    Zhao, Zhizhen
    Giryes, Raja
    Ye, Jong Chul
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) : 28 - 30
  • [2] Introduction to this special section: Physics-driven machine learning
    Shaw, Simon
    Kaplan, Sam
    Li, Chengbo
    Leading Edge, 2022, 41 (06):
  • [3] Physics-Driven Machine Learning for Computational Imaging: Part 2
    Wen, Bihan
    Ravishankar, Saiprasad
    Zhao, Zhizhen
    Giryes, Raja
    Ye, Jong Chul
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (02) : 13 - 15
  • [4] A physics-driven and machine learning-based digital twinning approach to transient thermal systems
    Di Meglio, Armando
    Massarotti, Nicola
    Nithiarasu, Perumal
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2024, 34 (06) : 2229 - 2256
  • [5] Desynchronous learning in a physics-driven learning network
    Wycoff, J. F.
    Dillavou, S.
    Stern, M.
    Liu, A. J.
    Durian, D. J.
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (14):
  • [6] Demonstration of Decentralized Physics-Driven Learning
    Dillavou, Sam
    Stern, Menachem
    Liu, Andrea J.
    Durian, Douglas J.
    PHYSICAL REVIEW APPLIED, 2022, 18 (01)
  • [7] Physics-driven Machine Learning for the Prediction of Coronal Mass Ejections' Travel Times
    Guastavino, Sabrina
    Candiani, Valentina
    Bemporad, Alessandro
    Marchetti, Francesco
    Benvenuto, Federico
    Massone, Anna Maria
    Mancuso, Salvatore
    Susino, Roberto
    Telloni, Daniele
    Fineschi, Silvano
    Michele, Piana
    ASTROPHYSICAL JOURNAL, 2023, 954 (02):
  • [8] Airborne Snow Radar Data Simulation With Deep Learning and Physics-Driven Methods
    Yari, Masoud
    Ibikunle, Oluwanisola
    Varshney, Debvrat
    Chowdhury, Tashnim
    Sarkar, Argho
    Paden, John
    Li, Jilu
    Rahnemoonfar, Maryam
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12035 - 12047
  • [9] Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging
    Hammernik, Kerstin
    Kustner, Thomas
    Yaman, Burhaneddin
    Huang, Zhengnan
    Rueckert, Daniel
    Knoll, Florian
    Akcakaya, Mehmet
    IEEE SIGNAL PROCESSING MAGAZINE, 2023, 40 (01) : 98 - 114
  • [10] Physics-driven learning for inverse problems in quantum chromodynamics
    Gert Aarts
    Kenji Fukushima
    Tetsuo Hatsuda
    Andreas Ipp
    Shuzhe Shi
    Lingxiao Wang
    Kai Zhou
    Nature Reviews Physics, 2025, 7 (3) : 154 - 163