Thickness Optimization of Front and Recombination ITO in Monolithic Perovskite/Silicon Tandem Solar Cells

被引:0
|
作者
Kabakli, Oezde Seyma [1 ]
McMullin, Kaitlyn [1 ]
Messmer, Christoph [1 ,2 ]
Bett, Alexander J. [1 ]
Tutsch, Leonard [1 ]
Bivour, Martin [1 ]
Hermle, Martin [1 ]
Glunz, Stefan W. [1 ,2 ]
Schulze, Patricia S. C. [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, Div Photovolta, Heidenhofstr 2, D-79110 Freiburg, Germany
[2] Univ Freiburg, Chair Photovolta Energy Convers, Dept Sustainable Syst Engn INATECH, Emmy Noether Str 2, D-79110 Freiburg, Germany
来源
SOLAR RRL | 2024年 / 8卷 / 20期
关键词
perovskite/silicon tandem solar cells; sputtering; thickness optimizations; tin-doped indium oxides; transparent conductive oxides; TEXTURED SILICON; EFFICIENCY; LOSSES; PASSIVATION; VOLTAGE;
D O I
10.1002/solr.202400454
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Optical losses of perovskite/silicon tandem solar cells can be effectively reduced by optimizing the thin-film layer thicknesses. Herein, the thicknesses of DC sputtered indium tin oxide (ITO) films, which serve as the front electrode and the recombination layer connecting the subcells, are optimized to reach high transparency and good lateral charge transport simultaneously. Optical simulations of the full perovskite/silicon tandem solar cell stacks are performed to find the optimum recombination and front electrode ITO thicknesses for solar cells as well as modules. Implementation of the optimized 25 nm front electrode ITO thickness in semitransparent single-junction perovskite solar cells increases the short-circuit density by 1.5 mA cm-2 compared to the former reference thickness of 75 nm. Combined with an optimized 20 nm recombination ITO layer, high short-circuit density of 20.3 mA cm-2 is reached in perovskite/silicon tandem solar cell devices, which is the highest reported value for planar front perovskite/silicon tandem solar cells to the best of knowledge. Further interface passivation enables 28.8% power conversion efficiency. Optical simulations done on monolithic perovskite/silicon tandem solar cells predict that decreasing the TCO thicknesses both at the front side and at recombination junction increases the photocurrent. 20.3 mA/cm2 short circuit current density is obtained by ITO thicknesses of 25 nm and 20 nm at the front and recombination sides, respectively. image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Grain Engineering for Perovskite/Silicon Monolithic Tandem Solar Cells with Efficiency of 25.4%
    Chen, Bo
    Yu, Zhengshan
    Liu, Kong
    Zheng, Xiaopeng
    Liu, Ye
    Shi, Jianwei
    Spronk, Derrek
    Rudd, Peter N.
    Holman, Zachary
    Huang, Jinsong
    JOULE, 2019, 3 (01) : 177 - 190
  • [32] Interconnecting layers of different crystalline silicon bottom cells in monolithic perovskite/silicon tandem solar cells
    Yan, Lingling
    Han, Can
    Shi, Biao
    Zhao, Ying
    Zhang, Xiaodan
    SUPERLATTICES AND MICROSTRUCTURES, 2021, 151
  • [33] Optimization of device design for low cost and high efficiency planar monolithic perovskite/silicon tandem solar cells
    Kim, Chan Ul
    Yu, Jae Choul
    Jung, Eui Dae
    Choi, In Young
    Park, Wonjin
    Lee, Hyungmin
    Kim, Inho
    Lee, Dok-Kwon
    Hong, Kuen Kee
    Song, Myoung Hoon
    Choi, Kyoung Jin
    NANO ENERGY, 2019, 60 : 213 - 221
  • [34] Perovskite/Silicon Tandem Solar Cells: Choice of Bottom Devices and Recombination Layers
    Chi, Weiguang
    Banerjee, Sanjay K.
    Jayawardena, K. G. D. I.
    Seok, Sang Il
    Silva, S. Ravi P.
    ACS ENERGY LETTERS, 2023, 8 (03) : 1535 - 1550
  • [35] Morphology of an ITO recombination layer deposited on a silicon wire texture for potential silicon/perovskite tandem solar cell applications
    Kulesza-Matlak, Grazyna
    Szindler, Marek
    Szindler, Magdalena M.
    Sypien, Anna
    Major, Lukasz
    Drabczyk, Kazimierz
    OPTO-ELECTRONICS REVIEW, 2023, 31 (04)
  • [36] Zinc tin oxide as high-temperature stable recombination layer for mesoscopic perovskite/silicon monolithic tandem solar cells
    Werner, Jeremie
    Walter, Arnaud
    Rucavado, Esteban
    Moon, Soo-Jin
    Sacchetto, Davide
    Rienaecker, Michael
    Peibst, Robby
    Brendel, Rolf
    Niquille, Xavier
    De Wolf, Stefaan
    Loper, Philipp
    Morales-Masis, Monica
    Nicolay, Sylvain
    Niesen, Bjoern
    Ballif, Christophe
    APPLIED PHYSICS LETTERS, 2016, 109 (23)
  • [37] 27.9% Efficient Monolithic Perovskite/Silicon Tandem Solar Cells on Industry Compatible Bottom Cells
    Koehnen, Eike
    Wagner, Philipp
    Lang, Felix
    Cruz, Alexandros
    Li, Bor
    Ross, Marcel
    Jost, Marko
    Morales-Vilches, Anna B.
    Topic, Marko
    Stolterfoht, Martin
    Neher, Dieter
    Korte, Lars
    Rech, Bernd
    Schlatmann, Rutger
    Stannowski, Bernd
    Albrecht, Steve
    SOLAR RRL, 2021, 5 (07)
  • [38] Unravelling Optical and Electrical Degradation of Perovskite Solar Cells and Impact on Perovskite/Silicon Monolithic Tandem Modules
    Qian, Jiadong
    Ernst, Marco
    Wu, Nandi
    Blakers, Andrew
    2019 IEEE 46TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2019, : 1187 - 1190
  • [39] Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature
    Albrecht, Steve
    Saliba, Michael
    Baena, Juan Pablo Correa
    Lang, Felix
    Kegelmann, Lukas
    Mews, Mathias
    Steier, Ludmilla
    Abate, Antonio
    Rappich, Joerg
    Korte, Lars
    Schlatmann, Rutger
    Nazeeruddin, Mohammad Khaja
    Hagfeldt, Anders
    Graetzel, Michael
    Rech, Bernd
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) : 81 - 88
  • [40] Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering
    De Bastiani, Michele
    Mirabelli, Alessandro J.
    Hou, Yi
    Gota, Fabrizio
    Aydin, Erkan
    Allen, Thomas G.
    Troughton, Joel
    Subbiah, Anand S.
    Isikgor, Furkan H.
    Liu, Jiang
    Xu, Lujia
    Chen, Bin
    Van Kerschaver, Emmanuel
    Baran, Derya
    Fraboni, Beatrice
    Salvador, Michael F.
    Paetzold, Ulrich W.
    Sargent, Edward H.
    De Wolf, Stefaan
    NATURE ENERGY, 2021, 6 (02) : 167 - +