Study on Multi-Objective Optimization of Construction Project Based on Improved Genetic Algorithm and Particle Swarm Optimization

被引:0
|
作者
Hu, Weicheng [1 ]
Zhang, Yan [2 ]
Liu, Linya [1 ]
Zhang, Pengfei [1 ]
Qin, Jialiang [1 ]
Nie, Biao [1 ]
机构
[1] East China Jiaotong Univ, State Key Lab Performance Monitoring & Protecting, Nanchang 330013, Peoples R China
[2] East China Jiaotong Univ, Sch Civil Engn & Architecture, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
construction project; multi-objective optimization; genetic algorithm; particle swarm optimization; uncertainty analysis;
D O I
10.3390/pr12081737
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Construction projects require concurrent consideration of the three major objectives of construction period, cost, and quality. To address the multi-objective optimization issues of construction projects, mathematical models of construction period, quality, and cost are established, respectively, and multi-objective optimization models are constructed for different construction objectives. A hybrid optimization method combining an improved genetic algorithm (GA) with a time-varying mutation rate and a particle swarm algorithm (PSO) is proposed to optimize construction projects, which overcomes the shortcomings of the original GA and improves the global optimality and stability of results. Various construction projects were considered, and different construction objectives were analyzed individually. Finally, an uncertainty analysis is developed for the proposed GA-PSO algorithm and compared with GA and PSO. The results indicate that the proposed hybrid approach outperforms the PSO and GA algorithms in providing a better and more stable multi-objective optimized construction solution, with performance improvements of 4.3-8.5% and volatility reductions of 37.5-64.4%. This provides a reference for the optimal design of wind farms, buildings, and other construction projects.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Multi-objective Optimization in Construction Project Based on a Hierarchical Subpopulation Particle Swarm Optimization Algorithm
    Wang, Weibo
    Feng, Quanyuan
    [J]. 2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL I, PROCEEDINGS, 2008, : 746 - 750
  • [2] An improved multi-objective particle swarm optimization algorithm
    Zhang, Qiuming
    Xue, Siqing
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2007, 4683 : 372 - +
  • [3] An Improved Competitive Mechanism based Particle Swarm Optimization Algorithm for Multi-Objective Optimization
    Yuen, Man-Chung
    Ng, Sin-Chun
    Leung, Man-Fai
    [J]. 2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 209 - 218
  • [4] IMOPSO: An Improved Multi-objective Particle Swarm Optimization Algorithm
    Ma, Borong
    Hua, Jun
    Ma, Zhixin
    Li, Xianbo
    [J]. PROCEEDINGS OF 2016 5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2016, : 376 - 380
  • [5] An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm
    Zhou, Zuan
    Dai, Guangming
    Fang, Pan
    Chen, Fangjie
    Tan, Yi
    [J]. ADVANCES IN COMPUTATION AND INTELLIGENCE, PROCEEDINGS, 2008, 5370 : 181 - 188
  • [6] Optimization of deep excavation construction using an improved multi-objective particle swarm algorithm
    Meng, Fanli
    Xu, Jiayi
    Xia, Changqing
    Chen, Wei
    Zhu, Min
    Fu, Chuanqing
    Chen, Xiangsheng
    [J]. AUTOMATION IN CONSTRUCTION, 2024, 166
  • [7] An Improved Multi-Objective Particle Swarm Optimization Algorithm Based on Angle Preference
    Ling, Qing-Hua
    Tang, Zhi-Hao
    Huang, Gan
    Han, Fei
    [J]. SYMMETRY-BASEL, 2022, 14 (12):
  • [8] Multi-objective Reactive Power Optimization Based on Improved Particle Swarm Algorithm
    Cui, Xue
    Gao, Jian
    Feng, Yunbin
    Zou, Chenlu
    Liu, Huanlei
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND MATERIAL APPLICATION (ESMA2017), VOLS 1-4, 2018, 108
  • [9] Optimization of Multi-objective Micro-grid Based on Improved Particle Swarm Optimization Algorithm
    Zhang, Jian
    Gan, Yang
    [J]. ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [10] Improved AP Deployment Optimization Scheme Based on Multi-objective Particle Swarm Optimization Algorithm
    Kong, Zhengyu
    Wu, Duanpo
    Jin, Xinyu
    Cen, Shuwei
    Dong, Fang
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (04): : 1568 - 1589