Research on Phase Diagram of an Improved Dual-Lane Heterogeneous Lattice Hydrodynamic Model Considering Curved Road

被引:0
|
作者
Xu, Yuanzi [1 ]
Cheng, Rongjun [1 ]
机构
[1] Ningbo Univ, Fac Maritime & Transportat, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous traffic flow; dual-lane heterogeneous lattice hydrodynamic model (DLHLHM); curved road; mKdV equation; CAR-FOLLOWING MODEL; EXTENDED CONTINUUM MODEL; FEEDBACK-CONTROL METHOD; TRAFFIC FLOW; JAMMING TRANSITION; DENSITY DIFFERENCE; VELOCITY; EQUATION; MEMORY;
D O I
10.1142/S1758825124500959
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The actual road traffic is a heterogeneous traffic flow composed of various types of vehicles. Ensuring safe operation of different types of vehicles while improving traffic stabilization has become a very important issue. Inspired by this, taking into account the discrepancy between the safety headway and the maximal velocity of different types of vehicles, an improved dual-lane heterogeneous lattice hydrodynamic model (DLHLHM) considering curved road is put forward in this research. The improved model's stabilization condition is inferred by reductive perturbation method. The mKdV equation is also inferred to describe the evolutionary processes of traffic density wave. Numerical examples probed into the impact of lane-changing rate, angle of curved road and different maximum speeds and safety distances on traffic stabilization. The hysteresis loop for new model also is explored to study traffic flow stabilization. Numerical simulation results accord with theoretical analysis, which indicates the effectiveness and feasibility of the DLHLHM. This study provides a new perspective on the dynamic evolution of heterogeneous traffic flow.
引用
收藏
页数:23
相关论文
共 42 条
  • [1] A novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow
    Liu, Huimin
    Cheng, Rongjun
    Ge, Hongxia
    MODERN PHYSICS LETTERS B, 2021, 35 (20):
  • [2] Lattice hydrodynamic model for two-lane traffic flow on curved road
    Zhou, Jie
    Shi, Zhong-Ke
    Wang, Chao-Ping
    NONLINEAR DYNAMICS, 2016, 85 (03) : 1423 - 1443
  • [3] Lattice hydrodynamic model for two-lane traffic flow on curved road
    Jie Zhou
    Zhong-Ke Shi
    Chao-Ping Wang
    Nonlinear Dynamics, 2016, 85 : 1423 - 1443
  • [4] An extended lattice hydrodynamic model considering the delayed feedback control on a curved road
    Cheng, Rongjun
    Wang, Yunong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 513 : 510 - 517
  • [5] An extended two-lane lattice hydrodynamic model for traffic flow on curved road with passing
    Wang, Ting
    Cheng, Rongjun
    Ge, Hongxia
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 533
  • [6] A new two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate
    Wang, Qingying
    Cheng, Rongjun
    Ge, Hongxia
    ENGINEERING COMPUTATIONS, 2021, 38 (04) : 1532 - 1553
  • [7] Lattice hydrodynamic model for traffic flow on curved road
    Jie Zhou
    Zhong-Ke Shi
    Nonlinear Dynamics, 2016, 83 : 1217 - 1236
  • [8] Lattice hydrodynamic model for traffic flow on curved road
    Zhou, Jie
    Shi, Zhong-Ke
    NONLINEAR DYNAMICS, 2016, 83 (03) : 1217 - 1236
  • [9] A two-lane lattice hydrodynamic model with heterogeneous lane changing rates
    Sun, Fengxin
    Chow, Andy H. F.
    Lo, S. M.
    Ge, Hongxia
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 511 : 389 - 400
  • [10] Lattice hydrodynamic model for traffic flow on curved road with passing
    Yue-Dan Jin
    Jie Zhou
    Zhong-Ke Shi
    Hai-Liang Zhang
    Chao-Ping Wang
    Nonlinear Dynamics, 2017, 89 : 107 - 124