Kernel-based estimation of spectral riskmeasures

被引:0
|
作者
Biswas, Suparna [1 ]
Sen, Rituparna [1 ]
机构
[1] Indian Stat Inst, Appl Stat Unit, 8th Mile,Mysore Rd,RVCE Post, Bengaluru 560059, Karnataka, India
来源
JOURNAL OF RISK | 2024年 / 26卷 / 05期
关键词
spectral risk measures; coherent risk measures; L-statistics; Monte Carlo simulations; backtesting; RISK MEASURES;
D O I
10.21314/JOR.2024.002
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Spectral risk measures (SRMs) belong to the family of coherent risk measures.A natural estimator for the class of SRMs takes the form ofL-statistics. Variousauthors have studied and derived the asymptotic properties of the empirical estima-tor of SRMs; we propose a kernel-based estimator. We investigate the large-sampleproperties of generalL-statistics based on independent and identically distributedobservations and dependent observations and apply them to our estimator. We provethat it is strongly consistent and asymptotically normal. Using Monte Carlo simu-lation, we compare the finite-sample performance of our proposed kernel estima-tor with that of several existing estimators for different SRMs and observe that ourproposed kernel estimator outperforms all the other estimators. Based on our sim-ulation study, we estimate the exponential SRM for heavily traded futures (that is,the Nikkei 225, Deutscher Aktienindex, Financial Times Stock Exchange 100 andHang Seng futures). We also discuss the use of SRMs in setting the initial-marginrequirements of clearinghouses. Finally, we perform an SRM backtesting exercise.
引用
收藏
页数:130
相关论文
共 50 条
  • [1] A new kernel-based approach for spectral estimation
    Zorzi, Mattia
    2020 EUROPEAN CONTROL CONFERENCE (ECC 2020), 2020, : 534 - 539
  • [2] Kernel-Based Skyline Cardinality Estimation
    Zhang, Zhenjie
    Yang, Yin
    Cai, Ruichu
    Papadias, Dimitris
    Tung, Anthony
    ACM SIGMOD/PODS 2009 CONFERENCE, 2009, : 509 - 521
  • [3] Kernel-Based Linear Spectral Mixture Analysis
    Liu, Keng-Hao
    Wong, Englin
    Du, Eliza Yingzi
    Chen, Clayton Chi-Chang
    Chang, Chein-I
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2012, 9 (01) : 129 - 133
  • [4] Kernel-based spectral color image segmentation
    Li, Hongyu
    Bochko, Vladimir
    Jaaskelainen, Timo
    Parkkinen, Jussi
    Shen, I-fan
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (11) : 2805 - 2816
  • [5] A Kernel-Based Approach for DBS Parameter Estimation
    Gomez-Orozco, V.
    Cuellar, J.
    Garcia, Hernan F.
    Alvarez, A.
    Alvarez, M.
    Orozco, A.
    Henao, O.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, CIARP 2016, 2017, 10125 : 158 - 166
  • [6] A kernel-based method for nonparametric estimation of variograms
    Yu, Keming
    Mateu, Jorge
    Porcu, Emilio
    STATISTICA NEERLANDICA, 2007, 61 (02) : 173 - 197
  • [7] Kernel-based clustering algorithms for spectral pattern recognition
    Hung, Chih-Cheng
    Zhou, Jian
    Petchokomani, Zacharie
    Coleman, Tommy
    PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2007, 6 : 380 - 384
  • [8] Kernel-Based Nonlinear Spectral Unmixing with Dictionary Pruning
    Li, Zeng
    Chen, Jie
    Rahardja, Susanto
    REMOTE SENSING, 2019, 11 (05)
  • [9] OPTIMAL KERNEL BANDWIDTH ESTIMATION FOR HYPERSPECTRAL KERNEL-BASED ANOMALY DETECTION
    Kwon, Heesung
    Gurram, Prudhvi
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2812 - 2815
  • [10] On the estimation of initial conditions in kernel-based system identification
    Risuleo, Riccardo S.
    Bottegal, Giulio
    Hjalmarsson, Hakan
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 1120 - 1125