The potential of plant growth-promoting bacteria isolated from arid heavy metal contaminated environments in alleviating salt and water stresses in alfalfa

被引:0
|
作者
Raklami, Anas [1 ]
Slimani, Aiman [2 ,3 ]
Oufdou, Khalid [1 ,2 ,3 ]
Jemo, Martin [1 ]
Bechtaoui, Noura [4 ]
Imziln, Boujamaa [2 ,3 ]
Meddich, Abdelilah
Navarro-Torre, Salvadora [5 ]
Rodriguez-Llorente, Ignacio D. [5 ]
Pajuelo, Eloisa [5 ]
机构
[1] Univ Mohammed VI Polytech UM6P, Coll Sustainable Agr & Environm Sci, AgroBiosciences Program, Lot 660, Benguerir 43150, Morocco
[2] Cadi Ayyad Univ, Fac Sci Semlalia 4, Labeled Res Unit CNRST, Lab Microbial Biotechnol Agrosci & Environm BioMa, Marrakech 2390, Morocco
[3] Cadi Ayyad Univ, Ctr Agrobiotechnol & Bioengn, Ctr AgroBiotech URL CNRST 05, Res Unit labeled CNRST,Physiol Abiot Stresses Tea, Marrakech 2390, Morocco
[4] Univ Mohammed Premier, Mohamed First Univ, Nador Multidisciplinary Fac, Dept Biol, Mohammed VI BV,PB 524, Oujda 60000, Morocco
[5] Univ Seville, Fac Pharm, Dept Microbiol & Parasitol, C-Prof Garcia Gonzalez 2, Seville 41012, Spain
关键词
heavy metal; extremophiles; evolved bacteria; abiotic stress; biofilms; plant growth; RHIZOBACTERIA; BIOSORPTION; RESISTANCE; MARSHES;
D O I
10.1093/lambio/ovae075
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Co-evolution of plant beneficial microbes in contaminated environments enhances plant growth and mitigates abiotic stress. However, few studies on heavy metal (HM) tolerant plant growth-promoting bacteria (PGPB) promoting crop growth in Morocco's farming areas affected by drought and salinity are available. Plant associated bacteria tolerant to HM and able to produce indole acetic acid and siderophores, display ACC-deaminase activity and solubilize phosphate, were isolated from long-term metal exposed environments. Tolerance to HM and biofilms formation in the absence or presence of HM were assessed. A consortium including two Ensifer meliloti strains (RhOL6 and RhOL8), one Pseudomonas sp. strain (DSP17), and one Proteus sp. strain (DSP1), was used to inoculate alfalfa (Medicago sativa) seedlings under various conditions, namely, salt stress (85 mM) and water stress (30% water holding capacity). Shoot and root dry weights of alfalfa were measured 60 days after sowing. In the presence of HM, DSP17 showed the greatest auxin production, whereas RhOL8 had the highest ACC-deaminase activity and DSP17 formed the densest biofilm. Root dry weight increased 138% and 195% in salt and water stressed plants, respectively, regarding non-inoculated controls. Our results confirm the improvement of alfalfa growth and mitigation of salt and drought stress upon inoculation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Potential of Plant Growth Promoting Traits by Bacteria Isolated from Heavy Metal Contaminated Soils
    Kumar, Vijay
    Singh, Simranjeet
    Singh, Joginder
    Upadhyay, Niraj
    BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY, 2015, 94 (06) : 807 - 814
  • [2] Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance
    Efe, Derya
    CURRENT MICROBIOLOGY, 2020, 77 (12) : 3861 - 3868
  • [3] Potential Plant Growth-Promoting Bacteria with Heavy Metal Resistance
    Derya Efe
    Current Microbiology, 2020, 77 : 3861 - 3868
  • [4] Erratum to: Potential of Plant Growth Promoting Traits by Bacteria Isolated from Heavy Metal Contaminated Soils
    Vijay Kumar
    Simranjeet Singh
    Joginder Singh
    Niraj Upadhyay
    Bulletin of Environmental Contamination and Toxicology, 2015, 94 : 815 - 815
  • [5] Plant growth-promoting bacteria isolated from earthworms enhance spinach growth and its phytoremediation potential in metal-contaminated soils
    Sofia Houida
    Lamia Yakkou
    Leyla Okyay Kaya
    Serdar Bilen
    Mohamed Raouane
    Abdellatif El Harti
    Souad Amghar
    International Microbiology, 2024, 27 : 545 - 558
  • [6] Plant growth-promoting bacteria isolated from earthworms enhance spinach growth and its phytoremediation potential in metal-contaminated soils
    Houida, Sofia
    Yakkou, Lamia
    Kaya, Leyla Okyay
    Bilen, Serdar
    Raouane, Mohamed
    El Harti, Abdellatif
    Amghar, Souad
    INTERNATIONAL MICROBIOLOGY, 2024, 27 (02) : 545 - 558
  • [7] Plant growth-promoting bacteria: a potential tool for arid mangrove reforestation
    Bashan, Y
    Holguin, G
    TREES-STRUCTURE AND FUNCTION, 2002, 16 (2-3): : 159 - 166
  • [8] Transcriptome Analysis of Plant Growth-promoting Bacteria Alleviating Microplastic and Heavy Metal Combined Pollution Stress in Sorghum
    Liu Y.-Q.
    Zhao S.-Y.
    Ren X.-M.
    Li Y.-Y.
    Zhang Y.-J.
    Zhang H.
    Han H.
    Chen Z.-J.
    Huanjing Kexue/Environmental Science, 2024, 45 (01): : 480 - 488
  • [9] Mechanism and Application of Plant Growth-Promoting Bacteria in Heavy Metal Bioremediation
    Ma Y.
    Wang Y.
    Shi X.-J.
    Chen X.-P.
    Li Z.-L.
    Huanjing Kexue/Environmental Science, 2022, 43 (09): : 4911 - 4922
  • [10] Plant growth-promoting bacteria that decrease heavy metal toxicity in plants
    Burd, GI
    Dixon, DG
    Glick, BR
    CANADIAN JOURNAL OF MICROBIOLOGY, 2000, 46 (03) : 237 - 245