Pairwise-Constraint-Guided Multi-View Feature Selection by Joint Sparse Regularization and Similarity Learning

被引:0
|
作者
Li, Jinxi [1 ]
Tao, Hong [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410072, Peoples R China
关键词
multi-view feature selection; pairwise constraints; weakly supervised learning; joint subspace; similarity learning; 6208; CLASSIFICATION; SCALE;
D O I
10.3390/math12142278
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Feature selection is a basic and important step in real applications, such as face recognition and image segmentation. In this paper, we propose a new weakly supervised multi-view feature selection method by utilizing pairwise constraints, i.e., the pairwise constraint-guided multi-view feature selection (PCFS for short) method. In this method, linear projections of all views and a consistent similarity graph with pairwise constraints are jointly optimized to learning discriminative projections. Meanwhile, the l2,0-norm-based row sparsity constraint is imposed on the concatenation of projections for discriminative feature selection. Then, an iterative algorithm with theoretically guaranteed convergence is developed for the optimization of PCFS. The performance of the proposed PCFS method was evaluated by comprehensive experiments on six benchmark datasets and applications on cancer clustering. The experimental results demonstrate that PCFS exhibited competitive performance in feature selection in comparison with related models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Pairwise Constraint-Guided Sparse Learning for Feature Selection
    Liu, Mingxia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 298 - 310
  • [2] Consensus learning guided multi-view unsupervised feature selection
    Tang, Chang
    Chen, Jiajia
    Liu, Xinwang
    Li, Miaomiao
    Wang, Pichao
    Wang, Minhui
    Lu, Peng
    KNOWLEDGE-BASED SYSTEMS, 2018, 160 : 49 - 60
  • [3] Joint Multi-View Unsupervised Feature Selection and Graph Learning
    Fang, Si-Guo
    Huang, Dong
    Wang, Chang-Dong
    Tang, Yong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01): : 16 - 31
  • [4] Multi-view Feature Learning with Discriminative Regularization
    Xu, Jinglin
    Han, Junwei
    Nie, Feiping
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 3161 - 3167
  • [5] Multi-view dimensionality reduction learning with hierarchical sparse feature selection
    Wei Guo
    Zhe Wang
    Hai Yang
    Wenli Du
    Applied Intelligence, 2023, 53 : 12774 - 12791
  • [6] Semi-supervised sparse feature selection based on multi-view Laplacian regularization
    Shi, Caijuan
    Ruan, Qiuqi
    An, Gaoyun
    Ge, Chao
    IMAGE AND VISION COMPUTING, 2015, 41 : 1 - 10
  • [7] Weighted feature selection via discriminative sparse multi-view learning
    Zhong, Jing
    Wang, Nan
    Lin, Qiang
    Zhong, Ping
    KNOWLEDGE-BASED SYSTEMS, 2019, 178 : 132 - 148
  • [8] Multi-view dimensionality reduction learning with hierarchical sparse feature selection
    Guo, Wei
    Wang, Zhe
    Yang, Hai
    Du, Wenli
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12774 - 12791
  • [9] Adaptive Collaborative Similarity Learning for Unsupervised Multi-view Feature Selection
    Dong, Xiao
    Zhu, Lei
    Song, Xuemeng
    Li, Jingjing
    Cheng, Zhiyong
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2064 - 2070
  • [10] Semi-supervised feature selection analysis with structured multi-view sparse regularization
    Shi, Caijuan
    Duan, Changyu
    Gu, Zhibin
    Tian, Qi
    An, Gaoyun
    Zhao, Ruizhen
    NEUROCOMPUTING, 2019, 330 : 412 - 424