Bounds for Lacunary Bilinear Spherical and Triangle Maximal Functions

被引:0
|
作者
Borges, Tainara [1 ]
Foster, Benjamin [2 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
Bilinear averaging operator; Coarea formula; High-low decomposition; Lacunary maximal function; Spherical average; OPERATORS; INEQUALITIES; SUBSETS;
D O I
10.1007/s00041-024-10115-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove Lp(Rd)xLq(Rd)-> Lr(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p({\mathbb {R}}<^>d)\times L<^>q({\mathbb {R}}<^>d)\rightarrow L<^>r({\mathbb {R}}<^>d)$$\end{document} bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H & ouml;lder relation 1/p+1/q=1/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/p+1/q=1/r$$\end{document}. The boundedness region that we get contains at least the interior of the H & ouml;lder boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in d >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 2$$\end{document}, we prove boundedness for any p,q is an element of(1,infinity]2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p,q\in (1,\infty ]<^>2$$\end{document}, which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in d >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 7$$\end{document}, and the description of the sharp region will depend on a sharp description of the H & ouml;lder bounds for the single scale triangle averaging operator, which is still open.
引用
收藏
页数:29
相关论文
共 50 条
  • [1] Lacunary discrete spherical maximal functions
    Kesler, Robert
    Lacey, Michael T.
    Arias, Dario Mena
    NEW YORK JOURNAL OF MATHEMATICS, 2019, 25 : 541 - 557
  • [2] IMPROVED ENDPOINT BOUNDS FOR THE LACUNARY SPHERICAL MAXIMAL OPERATOR
    Cladek, Laura
    Krause, Benjamin
    ANALYSIS & PDE, 2024, 17 (06):
  • [3] Improved bounds for the bilinear spherical maximal operators
    Heo, Yaryong
    Hong, Sunggeum
    Yang, Chan Woo
    MATHEMATICAL RESEARCH LETTERS, 2020, 27 (02) : 397 - 434
  • [4] Sparse bounds for the bilinear spherical maximal function
    Borges, Tainara
    Foster, Benjamin
    Ou, Yumeng
    Pipher, Jill
    Zhou, Zirui
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, 107 (04): : 1409 - 1449
  • [5] Bilinear Spherical Maximal Functions of Product Type
    Luz Roncal
    Saurabh Shrivastava
    Kalachand Shuin
    Journal of Fourier Analysis and Applications, 2021, 27
  • [6] Bilinear Spherical Maximal Functions of Product Type
    Roncal, Luz
    Shrivastava, Saurabh
    Shuin, Kalachand
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 27 (04)
  • [7] Sparse bounds for spherical maximal functions
    Michael T. Lacey
    Journal d'Analyse Mathématique, 2019, 139 : 613 - 635
  • [8] Sparse bounds for spherical maximal functions
    Lacey, Michael T.
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (02): : 613 - 635
  • [9] Bounds for discrete multilinear spherical maximal functions
    Anderson, Theresa C.
    Palsson, Eyvindur Ari
    COLLECTANEA MATHEMATICA, 2022, 73 (01) : 75 - 87
  • [10] Bounds for discrete multilinear spherical maximal functions
    Theresa C. Anderson
    Eyvindur Ari Palsson
    Collectanea Mathematica, 2022, 73 : 75 - 87