Single-Atom Catalyst Induced Amorphous Li2O2 Layer Enduring Lithium-Oxygen Batteries with High Capacity

被引:1
|
作者
Mohamed, Zeinab [1 ]
Zhou, Quan [1 ]
Zhu, Kefu [1 ]
Zhang, Guoliang [2 ]
Xu, Wenjie [1 ]
Chimtali, Peter Joseph [1 ]
Cao, Yuyang [1 ]
Xu, HanChen [1 ]
Yan, Ziwei [1 ]
Wang, Yixiu [1 ]
Akhtar, Hassan [1 ]
Al-Mahgari, Aad [1 ]
Wu, Xiaojun [3 ]
Wang, Changda [1 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, Sch Nucl Sci & Technol, Natl Synchrotron Radiat Lab, Key Lab Precis & Intelligent Chem, Hefei 230029, Anhui, Peoples R China
[2] Shandong Univ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, 17923 Jingshi Rd, Jinan 250061, Peoples R China
[3] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230029, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
amorphous Li2O2 film; lithium-oxygen batteries; nonprecious metal; single-atom catalyst; CARBON NANOSHEETS; POROUS CARBON; LI-O-2; SITES;
D O I
10.1002/adfm.202410091
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Aprotic lithium-oxygen batteries (LOBs) may deliver exceptionally high energy density but struggle to attain rapid reversibility and substantial capacity simultaneously, due to typical surface or solution-formed insulating solid Li2O2. Tuning the structure of Li2O2 to create a large-area amorphous layer on the cathode is predicted to overcome the multiperformance limitations. Here, an isolated nickel single atom to nitrogen-doped graphene as a cathode catalyst (NiNG SAC) for LOBs is presented via a green click-trapping strategy. Derived from the maximized exposure of atomic active sites of the cathode, the formation/decomposition mechanisms of Li2O2 are tailored, and a large area of thin Li2O2 amorphous film is achieved. The structure and functions of NiNG SAC are explored by theoretical computation and synchrotron radiational investigation. Consequently, the abundant NiN4 sites enhance redox kinetics and stand out to deliver an impressive specific discharge/charge capacity of 24 248/17 656 mAh g(-1) at 200 mA g(-1), together with a long cycle life of over 500 cycles. This study contributes helpful insights to achieve high-capacity LOBs with long lifespans, by constructing unique single-atom catalysts to optimize the formation of amorphous discharge Li2O2 products.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reactivity of Electrolytes for Lithium-Oxygen Batteries with Li2O2
    Chalasani, Dinesh
    Lucht, Brett L.
    ECS ELECTROCHEMISTRY LETTERS, 2012, 1 (02) : A38 - A42
  • [2] Sluggish Li2O2 dissolution - a key to unlock high-capacity lithium-oxygen batteries
    He, Lu
    Wang, Shuo
    Yu, Fengjiao
    Chen, Yuhui
    CHEMICAL SCIENCE, 2025, 16 (02) : 627 - 636
  • [3] Single-atom catalyst cathodes for lithium-oxygen batteries: a review
    Lei, Xin
    Liu, Bo
    Koudakan, Payam Ahmadian
    Pan, Hongge
    Qian, Yitai
    Wang, Gongming
    NANO FUTURES, 2022, 6 (01)
  • [4] A Solvent-Controlled Oxidation Mechanism of Li2O2 in Lithium-Oxygen Batteries
    Wang, Yu
    Lai, Nien-Chu
    Lu, Ying-Rui
    Zhou, Yucun
    Dong, Chung-Li
    Lu, Yi-Chun
    JOULE, 2018, 2 (11) : 2364 - 2380
  • [5] Formation/Decomposition of Li2O2 Induced by Porous NiCeOx Nanorod Catalysts in Aprotic Lithium-Oxygen Batteries
    Liu, Yihao
    Wang, Kun
    Peng, Xiaohui
    Wang, Chen
    Fang, Weiwei
    Zhu, Yusong
    Chen, Yuhui
    Liu, Lili
    Wu, Yuping
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (14) : 16214 - 16221
  • [6] Boosting the electrochemistry of Li2O2 in lithium-oxygen batteries by plasmon-induced hot-electron injection
    Yang, Weixue
    Li, Fei
    Liu, Huali
    Li, Zhen
    Zhao, Jiaqi
    Wang, Yu
    NEW JOURNAL OF CHEMISTRY, 2021, 45 (45) : 21160 - 21167
  • [7] Nature of Li2O2 and its relationship to the mechanisms of discharge/charge reactions of lithium-oxygen batteries
    Gao, Yanan
    Asahina, Hitoshi
    Matsuda, Shoichi
    Noguchi, Hidenori
    Uosaki, Kohei
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (18) : 13655 - 13666
  • [8] An Open-Structured Matrix as Oxygen Cathode with High Catalytic Activity and Large Li2O2 Accommodations for Lithium-Oxygen Batteries
    Lin, Xiaodong
    Yuan, Ruming
    Cai, Senrong
    Jiang, Youhong
    Lei, Jie
    Liu, San-Gui
    Wu, Qi-Hui
    Liao, Hong-Gang
    Zheng, Mingsen
    Dong, Quanfeng
    ADVANCED ENERGY MATERIALS, 2018, 8 (18)
  • [9] Understanding interaction mechanism between 8-MnO2 and Li2O2 in nonaqueous lithium-oxygen batteries
    Wang, Yanning
    Sun, Xianda
    Li, Yinshi
    ELECTROCHIMICA ACTA, 2023, 457
  • [10] Towards high performance lithium-oxygen batteries: Co3O4-NiO heterostructure induced preferential growth of ultrathin Li2O2 film
    Dong, Ji-Jun
    Ma, Chao
    Zhang, Qiang
    Bai, Wen-Long
    Cai, Zhi-Peng
    Li, Se-Si
    Zhang, Zhen
    Wu, Xue-Yan
    Wei, Xiao
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 863