Techno-economic and environmental impacts assessments of sustainable aviation fuel production from forest residues

被引:0
|
作者
Ahire, J. P. [1 ,2 ]
Bergman, R. [1 ]
Runge, T. [2 ]
Mousavi-Avval, S. H. [1 ,2 ]
Bhattacharyya, D. [3 ]
Brown, T. [4 ]
Wang, J. [5 ]
机构
[1] US Forest Serv, Forest Prod Lab, 1 Gifford Pinchot Dr, Madison, WI 53726 USA
[2] Univ Wisconsin Madison, Dept Biol Syst Engn, Madison, WI 53706 USA
[3] West Virginia Univ WVU, Dept Chem & Biomed Engn, Morgantown, WV 26506 USA
[4] SUNY ESF, Dept Sustainable Resources Management, 1 Forestry Dr, Syracuse, NY 13210 USA
[5] North Carolina State Univ, Dept Forest Biomat, 2820 Faucette Dr,Campus Box 8001, Raleigh, NC 27695 USA
来源
SUSTAINABLE ENERGY & FUELS | 2024年 / 8卷 / 19期
基金
美国食品与农业研究所;
关键词
JET FUEL; BIOMASS GASIFICATION; BIOFUELS;
D O I
10.1039/d4se00749b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The aviation sector contributes approximately 2.5% to global GHG emissions, driving a growing interest in mitigating its environmental impacts through use of sustainable aviation fuel (SAF). A critical component in SAF development lies in securing sustainable feedstock supplies to ensure competitive pricing and minimal environmental impact. This novel study compares the techno-economic and life-cycle environmental impacts from cradle-to-gate of SAF production from forest residues as a lignocellulosic biomass feedstock. The fuel production pathway considered in this study includes conversion of lignocellulosic biomass (forest residues) to renewable jet fuel through gasification, producing synthesis gas and subsequently SAF (FT-SPK-SAF) through Fischer-Tropsch synthesis in the presence of a catalyst. Techno-economic models of feedstock (forest residues) supply, pretreatment, and conversion processes for SAF production at 90 Mg per day capacity were developed and evaluated. Considering the value of co-products, the minimum selling price (MSP) of FT-SPK-SAF was $1.87 per kg or $1.44 L ($5.45 per gallon). The global warming impact of forest residue-based SAF was estimated to be 24.6 gCO2 eq. per MJ of SAF, which was lower than that of SAF from other lignocellulosic feedstock types. Additionally, this study evaluated the changes in carbon removal efficiency of SAF when accounting for soil carbon change. The outcomes of this study are useful for developing strategies to achieve economic feasibility and greenhouse gas reduction goals of SAF production from biobased sources, while also outlining performance targets for enhancing its environmental sustainability at a commercial scale. Sustainable aviation fuel (SAF) from forest residues is a promising pathway to reduce aviation's carbon footprint. This study assesses the techno-economic and environmental impacts of producing SAF via Fischer-Tropsch synthesis, with soil carbon benefits and greenhouse gas reductions.
引用
收藏
页码:4602 / 4616
页数:15
相关论文
共 50 条
  • [1] Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments
    Deuber, Raquel de Souza
    Bressanin, Jessica Marcon
    Fernandes, Daniel Santos
    Guimaraes, Henrique Real
    Chagas, Mateus Ferreira
    Bonomi, Antonio
    Fregolente, Leonardo Vasconcelos
    Watanabe, Marcos Djun Barbosa
    [J]. ENERGIES, 2023, 16 (06)
  • [2] The current techno-economic, environmental, policy status and perspectives of sustainable aviation fuel (SAF)
    Shahriar, Md Fahim
    Khanal, Aaditya
    [J]. FUEL, 2022, 325
  • [3] Mapping the environmental and techno-economic potential of biojet fuel production from biomass residues in Brazil
    Cervi, Walter Rossi
    Lamparelli, Rubens Augusto Camargo
    Gallo, Bruna Cristina
    de Oliveira Bordonal, Ricardo
    Seabra, Joaquim Eugenio Abel
    Junginger, Martin
    van der Hilst, Floor
    [J]. BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2021, 15 (01): : 282 - 304
  • [4] Environmental impacts and techno-economic assessments of biobased products: A review
    Mousavi-Avval, Seyed Hashem
    Sahoo, Kamalakanta
    Nepal, Prakash
    Runge, Troy
    Bergman, Richard
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 180
  • [5] Decentralization of sustainable aviation fuel production in Brazil through Biomass-to-Liquids routes: A techno-economic and environmental evaluation
    Guimaraes, Henrique Real
    Bressanin, Jessica Marcon
    Motta, Ingrid Lopes
    Chagas, Mateus Ferreira
    Klein, Bruno Colling
    Bonomi, Antonio
    Maciel Filho, Rubens
    Watanabe, Marcos Djun Barbosa
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 276
  • [6] Techno-economic study of NMMO pretreatment and biogas production from forest residues
    Teghammar, Anna
    Forgacs, Gergely
    Horvath, Ilona Sarvari
    Taherzadeh, Mohammad J.
    [J]. APPLIED ENERGY, 2014, 116 : 125 - 133
  • [7] Techno-economic analysis of renewable aviation fuel production: From farming to refinery processes
    Tongpun, Pimpun
    Wang, Wei-Cheng
    Srinophakun, Penjit
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 226 : 6 - 17
  • [8] Techno-economic and environmental assessments for sustainable bio-methanol production as landfill gas valorization
    Choe, Changgwon
    Byun, Manhee
    Lee, Hyunhee
    Lim, Hankwon
    [J]. WASTE MANAGEMENT, 2022, 150 : 90 - 97
  • [9] Data-Driven Framework for the Techno-Economic Assessment of Sustainable Aviation Fuel from Pyrolysis
    Okolie, Jude A.
    Moradi, Keon
    Rogachuk, Brooke E.
    Narra, Bala Nagaraju
    Ogbaga, Chukwuma C.
    Okoye, Patrick U.
    Adeleke, Adekunle A.
    [J]. Bioenergy Research, 2025, 18 (01)