Deep Reinforcement Learning for Multiobjective Scheduling in Industry 5.0 Reconfigurable Manufacturing Systems

被引:0
|
作者
Bezoui, Madani [1 ]
Kermali, Abdelfatah [1 ]
Bounceur, Ahcene [2 ]
Qaisar, Saeed Mian [3 ,4 ]
Almaktoom, Abdulaziz Turki [4 ]
机构
[1] CESI LINEACT, UR 7527, Nice, France
[2] KFUPM, ICS Dept, Dhahran, Saudi Arabia
[3] CESI LINEACT, UR 7527, Lyon, France
[4] Effat Univ, Elect & Comp Engn Dept, Jeddah 22332, Saudi Arabia
来源
关键词
Reconfigurable Manufacturing Systems; Sustainability; Deep Reinforcement Learning; Multiobjective Scheduling; Industry; 5.0;
D O I
10.1007/978-3-031-59933-0_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In modern-day manufacturing, it is imperative to react promptly to altering market requirements. Reconfigurable Manufacturing Systems (RMS) are a significant leap forward in achieving this criteria as they offer a flexible and affordable structure to comply with evolving production necessities. The ever-changing nature of RMS demands a sturdy induction of learning algorithms to persistently improve system configurations and scheduling. This study suggests that using Reinforcement Learning (RL), specifically, the Double Deep Q-Network (DDQN) algorithm, is a feasible way to navigate the intricate, multi-objective optimization landscape of RMS. Key points to consider regarding this study include cutting down tardiness costs, ensuring sustainability by reducing wasted liquid and gas emissions during production, optimizing makespan, and improving ergonomics by reducing operator intervention during system reconfiguration. Our proposal consists of two layers. Initially, we suggest a hierarchical and modular architecture for RMS which includes a multi-agent environment at the reconfigurable machine tool level, which improves agent interaction for optimal global results. Secondly, we incorporate DDQN to navigate the multi-objective space in a clever manner, resulting in more efficient and ergonomic reconfiguration and scheduling. The findings indicate that employing RL can help solve intricate optimization issues that come with contemporary manufacturing paradigms, clearing the path for Industry 5.0.
引用
收藏
页码:90 / 107
页数:18
相关论文
共 50 条
  • [1] A Review of Deep Reinforcement Learning Approaches for Smart Manufacturing in Industry 4.0 and 5.0 Framework
    del Real Torres, Alejandro
    Stefan Andreiana, Doru
    Ojeda Roldan, Alvaro
    Hernandez Bustos, Alfonso
    Acevedo Galicia, Luis Enrique
    APPLIED SCIENCES-BASEL, 2022, 12 (23):
  • [2] Multiobjective Reinforcement Learning for Reconfigurable Adaptive Optimal Control of Manufacturing Processes
    Dornheim, Johannes
    Link, Norbert
    2018 13TH INTERNATIONAL SYMPOSIUM ON ELECTRONICS AND TELECOMMUNICATIONS (ISETC), 2018, : 97 - 101
  • [3] Multiobjective Deep Reinforcement Learning for Recommendation Systems
    Keat, Ee Yeo
    Sharef, Nurfadhlina Mohd
    Yaakob, Razali
    Kasmiran, Khairul Azhar
    Marlisah, Erzam
    Mustapha, Norwati
    Zolkepli, Maslina
    IEEE ACCESS, 2022, 10 : 65011 - 65027
  • [4] Multi-objective Reconfigurable Manufacturing System Scheduling Optimisation: A Deep Reinforcement Learning Approach
    Tang, Jiecheng
    Haddad, Yousef
    Patsavellas, John
    Salonitis, Konstantinos
    IFAC PAPERSONLINE, 2023, 56 (02): : 11082 - 11087
  • [5] A framework for scheduling in cloud manufacturing with deep reinforcement learning
    Liu, Yongkui
    Zhang, Lin
    Wang, Lihui
    Xiao, Yingying
    Xu, Xun
    Wang, Mei
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 1775 - 1780
  • [6] Job shop smart manufacturing scheduling by deep reinforcement learning
    Serrano-Ruiz, Julio C.
    Mula, Josefa
    Poler, Raul
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 38
  • [7] Scheduling of Customized Tasks in Cloud Manufacturing with Deep Reinforcement Learning
    Lv, Ming
    Cao, Yu
    Qiu, Xingbo
    Liu, Yongkui
    Zhang, Lin
    INTELLIGENT NETWORKED THINGS, CINT 2024, PT II, 2024, 2139 : 241 - 252
  • [8] Deep Reinforcement Learning for Multiobjective Optimization
    Li, Kaiwen
    Zhang, Tao
    Wang, Rui
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3103 - 3114
  • [9] Task scheduling based on deep reinforcement learning in a cloud manufacturing environment
    Dong, Tingting
    Xue, Fei
    Xiao, Chuangbai
    Li, Juntao
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (11):
  • [10] Intelligent scheduling and reconfiguration via deep reinforcement learning in smart manufacturing
    Yang, Shengluo
    Xu, Zhigang
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2022, 60 (16) : 4936 - 4953