Superclass-aware visual feature disentangling for generalized zero-shot learning

被引:0
|
作者
Niu, Chang [1 ,2 ]
Shang, Junyuan [1 ,3 ]
Zhou, Zhiheng [1 ,4 ]
Yang, Junmei [1 ]
机构
[1] South China Univ Technol, Sch Elect & Informat Engn, Guangzhou 510640, Peoples R China
[2] Foshan Univ, Sch Comp Sci & Artificial Intelligence, Foshan 528000, Peoples R China
[3] GRG Banking Equipment Co Ltd, Guangzhou 510663, Peoples R China
[4] South China Univ Technol, Key Lab Big Data & Intelligent Robot, Minist Educ, Guangzhou, Peoples R China
关键词
Zero-shot learning; Transfer learning; Image classification; Action recognition;
D O I
10.1016/j.eswa.2024.125150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Zero-shot learning (ZSL) aims to learn a model trained on seen samples with the ability to recognize samples from unseen classes, while generalized ZSL (GZSL) takes a step closer to realistic scenarios by recognizing both of seen and unseen samples. The existing methods rely on the semantic descriptions as the side-information and conduct tight alignment between the visual and semantic spaces. However, the tight modality alignment may result in incomplete representations, leading to the loss of originally detailed and discriminative information. In this paper, we propose a simple yet effective superclass-aware visual feature disentangling method termed as SupVFD for GZSL. We use the neighbor relations of the semantic descriptions to define superclass and with the guide of superclass, our method disentangles visual features into discriminative and transferable factors. To this end, the semantic descriptions are used as implicit supervision, which preserves the valuable detailed and discriminative information in the visual features. The extensive experiments in both ZSL and GZSL settings prove our method outperforms the state-of-the-art methods for image object classification as well as video action recognition. Code is available at our github: https://github.com/changniu54/SupVFD-Master.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Superclass-aware network for few-shot learning
    Wu, Shuang
    Kankanhalli, Mohan
    Tung, Anthony K. H.
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 216
  • [2] Semantics Disentangling for Generalized Zero-Shot Learning
    Chen, Zhi
    Luo, Yadan
    Qiu, Ruihong
    Wang, Sen
    Huang, Zi
    Li, Jingjing
    Zhang, Zheng
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8692 - 8700
  • [3] Contrastive visual feature filtering for generalized zero-shot learning
    Meng, Shixuan
    Jiang, Rongxin
    Tian, Xiang
    Zhou, Fan
    Chen, Yaowu
    Liu, Junjie
    Shen, Chen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024,
  • [4] Adaptive Bias-Aware Feature Generation for Generalized Zero-Shot Learning
    Yang, Yanhua
    Zhang, Xiaozhe
    Yang, Muli
    Deng, Cheng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 280 - 290
  • [5] Disentangling Semantic-to-Visual Confusion for Zero-Shot Learning
    Ye, Zihan
    Hu, Fuyuan
    Lyu, Fan
    Li, Linyan
    Huang, Kaizhu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2828 - 2840
  • [6] Semantic Feature Extraction for Generalized Zero-Shot Learning
    Kim, Junhan
    Shim, Kyuhong
    Shim, Byonghyo
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 1166 - 1173
  • [7] FREE: Feature Refinement for Generalized Zero-Shot Learning
    Chen, Shiming
    Wang, Wenjie
    Xia, Beihao
    Peng, Qinmu
    You, Xinge
    Zheng, Feng
    Shao, Ling
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 122 - 131
  • [8] Unbiased feature generating for generalized zero-shot learning
    Niu, Chang
    Shang, Junyuan
    Huang, Junchu
    Yang, Junmei
    Song, Yuting
    Zhou, Zhiheng
    Zhou, Guoxu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2022, 89
  • [9] Towards Discriminative Feature Generation for Generalized Zero-Shot Learning
    Ge, Jiannan
    Xie, Hongtao
    Li, Pandeng
    Xie, Lingxi
    Min, Shaobo
    Zhang, Yongdong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10514 - 10529
  • [10] Inference guided feature generation for generalized zero-shot learning
    Han, Zongyan
    Fu, Zhenyong
    Li, Guangyu
    Yang, Jian
    NEUROCOMPUTING, 2021, 430 : 150 - 158